Глава 1. Принципы построения автоматизированных производств

Часть 1. Основы теории автоматического управления

Автоматика – отрасль науки и техники, охватывающая теорию и устройства средств и систем автоматического управления машинами и технологическими процессами. Она возникла в 19 веке с появлением механизированного производства на базе пря­дильных и ткацких станков, паровых машин и др., которые заменили ручной труд и дали возможность повысить его производительность.

Автоматизации всегда предшествует процесс полной механизации – такого производственного процесса, в котором человек не затрачивает на выполнение операций физической силы.

По мере развития техники функции управления процессами и машинами расши­рялись и усложнялись. Человек уже во многих случаях не был в состоя­нии управлять механизированным производством без специальных до­полнительных устройств. Это обусловило возникновение автоматизиро­ванного производства, при котором работники высвобождаются не только от физического труда, но и от функций контроля за машинами, оборудованием, производственными процессами и операциями, а также управления ими.

Под автоматизацией производственных процессов понимают комплекс технических мероприятий по разработке новых технологических процессов и создание производства на основе высокопроизводительного оборудования, выполняющего все основные операции без непосредственного участия человека.

Автоматизация способствует значительному повы­шению производительности труда, улучшению качества продукции и условий труда людей.

В сельском хозяйстве, пищевой и перерабатывающей промышленности автоматизируется контроль и управление температурой, влажностью, давлением, регулирование скорости и перемещение, сортирование по качеству, упаковка и многие другие процессы и операции, обеспечивая более высокую их эффективность, экономию труда и средств.

Автоматизированные производства по сравнению с не автоматизированными обладают определенной спецификой:

Для повышения эффективности они должны охватывать большее количество разнородных операций;

Необходима тщательная проработка технологии, анализ объектов производства, маршрутов движения и операций, обеспечения надежности процесса с заданным качеством;

При широком ассортименте выпускаемой продукции и сезонности работы технологические решения могут быть многовариантными;

Повышаются требования к четкой и слаженной работе различных служб производства.

При проектировании автоматизированного производства должны быть соблюдены следующие принципы:

1. Принцип завершенности. Следует стремиться к выполнению всех операций в пределах одной автоматизированной производственной системы без промежуточной передачи полуфабрикатов в другие подразделения. Для реализации этого принципа необходимо обеспечить:


Технологичность продукта, т.е. на его изготовление должно расходоваться минимальное количество материалов, времени и средств;

Унификацию методов обработки и контроля продукта;

Расширение типажа оборудования с повышенными технологическими возможностями для обработки нескольких видов сырья или полуфабрикатов.

2. Принцип малооперационной технологии. Количество операций промежуточной обработки сырья и полуфабрикатов должны быть сведены к минимуму, а маршруты их подачи - оптимизированы.

3. Принцип малолюдной технологии. Обеспечение автоматической работы на протяжении всего цикла изготовления продукта. Для этого необходимо стабилизировать качество входного сырья, повысить надежность оборудования и информационного обеспечения процесса.

4. Принцип безотладочной технологии. Объект управления не должен требовать дополнительных наладочных работ после того, как он пущен в эксплуатацию.

5. Принцип оптимальности. Все объекты управления и службы производства подчинены единому критерию оптимальности, например, выпускать продукцию только высшего качества.

6. Принцип групповой технологии. Обеспечивает гибкость производства, т.е. возможность перехода с выпуска одного продукта на выпуск другого. В основе принципа лежит общность операций, их сочетаний и рецептур.

Для серийного и мелкосерийного производства характерно создание автоматизированных систем из универсального и агрегатного оборудования с межоперационными емкостями. Это оборудование в зависимости от перерабатываемого продукта может переналаживаться.

Для крупносерийного и массового выпуска продукции автоматизированное производство создается из специального оборудования, объединенного жесткой связью. В подобных производствах применяется высокопроизводительное оборудование, например, роторное для разливки жидкостей в бутылки или пакеты.

Для функционирования оборудования необходим промежуточный транспорт для сырья, полуфабрикатов, компонентов, различных сред.

В зависимости от промежуточного транспорта автоматизированные производства могут быть:

Со сквозной транспортировкой без перестановки сырья, полуфабриката или сред;

С перестановкой сырья, полуфабрикатов или сред;

С промежуточной емкостью.

По видам компоновки оборудования (агрегатирования) различают автоматизированные производства:

Однопоточные;

Параллельного агрегатирования;

Многопоточные.

В однопоточном оборудование расположено последовательно по ходу выполнения операций. Для увеличения производительности однопоточного производства операция может выполняться на однотипном оборудовании параллельно.

В многопоточном производстве каждый поток выполняет аналогичные функции, но работает независимо один от другого.

Особенностью сельскохозяйственного производства и переработки продукции является быстрое снижение ее качества, например, после забоя скота или съема плодов с деревьев. Это требует такого оборудования, которое имело бы высокую мобильность (возможность выпуска широкого ассортимента продуктов из однотипного сырья и переработки различных видов сырья на однотипном оборудовании).

Для этого создаются переналаживаемые производственные системы, обладающие свойством автоматизированной переналадки. Организационным модулем таких систем является производственный модуль, автоматизированная линия, автоматизированный участок или цех.

Производственным модулем называют систему, состоящую из единицы технологического оборудования, оснащенного автоматизированным устройством программного управления и средствами автоматизации технологического процесса, автономно функционирующую и имеющую возможность встраиваться в систему более высокого уровня (рис.1.1).

Рисунок 1.1 – Структура производственного модуля: 1- оборудование для выполнения одной или нескольких операций; 2- управляющее устройство; 3- погрузочно-разгрузочное устройство; 4- транспортно- накопительное устройство (промежуточная емкость); 5- контрольно-измерительная система.

Производственный модуль может включать в себя, например, сушильную камеру, контрольно-измерительную систему, погрузочно-разгрузочную и транспортную системы с локальным управлением или смесительную установку с аналогичным добавочным оборудованием.

Частным случаем производственного модуля является производственная ячейка – комбинация модулей с единой системой измерения режимов работы оборудования, транспортно-накопительной и погрузо-разгрузочной системами (рис.1.2). Производственная ячейка может встраиваться в системы более высокого уровня.

Рисунок 1.2 – Структура производственной ячейки: 1- оборудования для выполнения одной или нескольких операций; 2- приемный бункер; 3-погрузочно-разгрузочное устройство; 4- конвейер; 5- промежуточная емкость; 6- управляющий компьютер; 7- контрольно-измерительная система.

Автоматизированная линия - переналаживаемая система, состоящая из нескольких производственных модулей или ячеек, объединенных единой транспортно- складской системой и системой автоматического управления технологического процесса (АСУ ТП). Оборудование автоматизированной линии расположено в принятой последовательности выполнения технологических операций. Структура автоматизированной линии изображена на рис.1.3.

В отличие от автоматизированной линии на переналаживаемом автоматизированном участке предусмотрена возможность изменения последовательности использования технологического оборудования. Линия и участок могут иметь отдельно функционирующие единицы технологического оборудования. Структура автоматизированного участка приведена на рис.1.4.

Рисунок 1.3 – Структура автоматизированной линии: 1, 2, 3, 4- производственные ячейки и модули; 5- транспортная система; 6-склад; 7- управляющий компьютер.

Рисунок 1.4 – Структура автоматизированного участка: 1,2,3- автоматизированные линии;

4- производственные ячейки;

5- произвоственные модули;

7- управляющий компьютер.

На сегодняшний день автоматизация процессов производства является неотъемлемым направлением работы любой промышленной компании.

Для обеспечения безопасности сотрудников промышленных компаний и развития производственной деятельности Министерство труда и социального развития РФ разработало рекомендации по следующим направлениям: 1) разработка и внедрение плана мероприятий по безопасности труда; 2) установка специальных приборов (систем) для регулирования производственных процессов дистанционным и автоматическим способом; 3) внедрение специальных роботов для работы на опасном предприятии.

  1. Дистанционное управление. Автоматизация технологических процессов и производств выполняется через функцию дистанционного управления. Оно регулирует работу оборудования с дальнего расстояния от вредной и опасной зоны.

Оператор ведет контроль над процессами производства, используя определенные средства сигнализации или визуальные каналы.

Лучшая статья месяца

Если вы будете делать все самостоятельно, сотрудники не научатся работать. Подчиненные не сразу справятся с задачами, которые вы делегируете, но без делегирования вы обречены на цейтнот.

Мы опубликовали в статье алгоритм делегирования, который поможет освободиться от рутины и перестать работать круглосуточно. Вы узнаете, кому можно и нельзя поручить работу, как правильно дать задание, чтобы его выполнили, и как контролировать персонал.

Приборы, с помощью которых осуществляется дистанционное управление, выпускают в двух версиях: передвижной и стационарной. Исходя из принципов действия, выделяют электрические, механические, гидравлические, пневматические, а также комбинированные средства дистанционного управления. Выбор устройства зависит от ряда факторов. Это может быть механизм оборудования, возможность соблюдения точной дистанции, вероятность воздействия опасного производственного фактора.

Если расстояние от оборудования до прибора управления незначительное, то применяют механическое дистанционное управление.

Самыми популярными являются электрические приборы. Это связано с относительной простотой конструкции и отсутствием инерции.

  • Как создать виртуальный офис и как управлять его сотрудниками
  1. Автоматизация технологических процессов и производств – это система средств, которая выполняет функцию управления производственными процессами, исключая участие человека или оставляя за ним решение самых ответственных задач.

Автоматизация процессов производства включает в себя определенные способы управления оборудованием, предполагающие выполнение производственного процесса в заданном режиме и последовательности, а также с указанной производительностью. Такое управление подразумевает минимальное вмешательство человека. Сотрудник не прилагает физических усилий, а только контролирует производственный процесс.

Обычно при таком подходе к организации производственного процесса образовывается АСУТП.

Основа автоматизации производства заключается в определенном перераспределении потоков информации, а также энергетических и материальных ресурсов с учетом всех критериев управления.

Автоматизация процессов производства предполагает работу с основными целями , которые заключаются в:

  • увеличении показателя эффективности процесса производства;
  • обеспечении безопасности на производстве.

Для достижения поставленных целей необходимо решение задач , характерных для автоматизации производства:

  • совершенствование качества процесса регулирования;
  • рост коэффициента, по показателю которого можно судить о готовности оборудования к работе;
  • совершенствование организации труда для ведущих специалистов управления производственным процессом;
  • сохранение информационных ресурсов, содержащих сообщения о технологическом процессе и авариях на производстве.

Основные виды автоматизации процессов производства

Существует два вида автоматизации: полная и частичная.

  1. Частичная предполагает автоматизацию какого-либо отдельного оборудования и производственных операций.

Автоматизация, включающая одну либо несколько операций технологического процесса, является частичной. Автоматизация производственных процессов используется в том случае, когда усложняется система управления производств, а условия труда опасны для жизни.

Такой вид автоматизации часто используется в компаниях отрасли пищевой промышленности, и обычно его применяют к действующему на производстве оборудованию.

  1. Полная автоматизация процессов производства – это наивысший уровень автоматизации, который подразумевает передачу всех контрольных и управленческих функций техническим приборам.

В настоящее время такой вид автоматизации применяется очень редко. Преимущественно контроль над процессом производства ведет человек. Близки к этому виду автоматизации предприятия атомной энергетики.

Если учитывать характер производственных процессов, то можно выделить следующие виды автоматизации:

  • непрерывных производственных процессов;
  • дискретных производственных процессов;
  • гибридных производственных процессов.
  • l&g t;

    Уровни автоматизации процессов производства

    Автоматизация производства может выполняться на следующих уровнях:

  1. Нулевой уровень . Здесь имеется в виду автоматизация определенных рабочих моментов. Например, вращение шпинделя. В остальном предполагается участие человека.

На этом уровне автоматизация процессов производства называется механизацией.

  1. Автоматизация первого уровня включает в себя изготовление приборов, которые не подразумевают участие сотрудника в случае осуществления холостых ходов на каком-либо одном устройстве.

На этом уровне автоматизация технических процессов и производств носит название «автоматизация рабочего процесса в поточном и серийном производстве». На данном этапе не предполагается автоматическая взаимосвязь между рабочим и оборудованием. В этом случае сотрудник производства следит за транспортировкой машин и осуществляет контроль над производственным процессом. Для данного уровня характерны машины-автоматы и полуавтоматы. Автоматическое оборудование исключает участие человека. Полуавтоматические устройства наоборот – требуют вмешательства человека в рабочий цикл. Приведем пример: новое современное оборудование – токарный автомат – осуществляет технологический процесс самостоятельно: делает обтачивание, сверление и так далее. Подобное устройство по показателям производительности может равняться 10 обычным машинам. Это происходит благодаря автоматизации многих рабочих моментов и высокому уровню концентрации производственных операций.

  • Дистанционный работник: плюсы и минусы для работодателя
  1. Автоматизация процессов производства второго уровня предполагает автоматизацию технологических процессов.

Второй уровень автоматизации предполагает осуществление четырех моментов рабочего процесса. Это контроль над оборудованием, транспортировка, утилизация отходов и управление комплексом приборов.

В виде производственных устройств разрабатываются и используются ГПС (гибкие производственные системы), автоматические линии.

Автоматической линией является система оборудования, которая действует самостоятельно, без участия человека. Как правило, машины установлены в определенной технологической последовательности и связаны инструментами транспортировки, управления, загрузки, утилизации отходов и контроля.

Приведем в пример автоматическую линию по обработке шестерни редуктора, которая позволяет исключить участие человека, тем самым освобождая около 20 сотрудников. Окупается в срок до трех лет.

Автоматическая линия подразумевает производственное оборудование, которое создается под какой-либо вид транспортного средства и присоединяется к нему определенным прибором для загрузки (например, лотком). Такая линия содержит все рабочие и в том числе холостые позиции, служащие для обслуживания и осмотра автоматической линии. В случае если процесс требует участия человека, то линия носит название автоматизированной.

  1. Третий уровень автоматизации включает в себя все этапы производства от разработки до испытаний и отправки готовой продукции. На этом уровне предполагается комплексное автоматизирование.

Для того чтобы выйти на третий уровень автоматизации, необходимо освоить все ранее рассмотренные уровни. В этом случае производство нужно обеспечить высокотехнологичными устройствами и затратить немало средств.

Комплексная автоматизация технологических процессов и производств дает нужный эффект при большом объеме выпуска продукции с неизменным устройством и узким перечнем (какие-либо элементы для определенного оборудования и др.). Такой вид автоматизации выводит производство на новый уровень развития и оправдывает себя с точки зрения эффективности затрат на основные средства.

Автоматизация процессов производств подобного рода дает возможности, которые можно оценить на данном примере: в США есть завод с комплексной автоматизацией производства автомобильных рам. У компании 160 сотрудников, большинство из которых являются инженерами и специалистами по ремонту оборудования. Для реализации определенной программы на производстве в случае отсутствия комплексной автоматизации необходимо было бы привлечь к рабочему процессу около 12 тысяч человек.

Данный уровень решает такие задачи, как: транспортировка готовой производственной продукции между цехами с помощью автоматически настроенного адресования, складирование, утилизация отходов производства, управление технологическим процессом с широким использованием компьютерных устройств. Третий уровень предполагает минимальное вмешательство человека в процесс производства. Функции сотрудника заключаются лишь в обслуживании оборудования и контроле состояния приборов.

  • Как составить график продаж: шпаргалка для коммерческого директора

Работа по автоматизации процессов производства: 4 основных направления

Деятельность, связанная с автоматизацией на производстве, реализуется в следующих направлениях:

  1. Разработка и внедрение проектов по конструкции оборудования и технологий для совершенствования рабочего процесса:
  • создание всех частей механической и электронной направленности в приборе-автомате – от устройства до способа их производства;
  • автоматизация и управление технологическими процессами и производствами путем проектирования и введения комплекса управления с помощью действующих приборов – производственных компьютеров, электрических двигателей, датчиков и др.;
  • создание программы по управлению комплексом автоматизации основных средств либо обработки информационных ресурсов. Также предполагается разработка определенного алгоритма.
  1. Организация и управление:
  • организация коллективной работы сотрудников;
  • исходя из экономически обоснованных расчетов, принятие важных решений в управлении;
  • создание комплекса мероприятий из сферы подготовки проектов автоматизации, производства и испытания готовой продукции;
  • контроль и управление информационными ресурсами предприятия.
  1. Наука и исследования:
  • создание моделей устройств, производственных процессов, методов и комплексов автоматизации;
  • организация экспериментальных испытаний, проведение обработки и анализа результатов.
  1. Автоматизация процессов производства содержит также работу в сервисно-эксплуатационном направлении:
  • создание мероприятий по работе и ремонту основных средств;
  • проведение периодической диагностики производственных процессов и основных средств;
  • проведение приема и внедрения в производство приборов-автоматов.
  • 4 тренда интернет-маркетинга, которые будут актуальны в 2017 году

Как помочь сотрудникам «пережить» автоматизацию производства

  1. Возложите на освободившихся сотрудников новые обязанности. Работа многих сотрудников заменяется автоматическим оборудованием. Автоматизация технологических процессов и производств теряет свой смысл, если не происходит сокращение штата. Здесь ваша кадровая служба должна вести грамотную работу, предъявляя определенные требования к отбору сотрудников, которые продолжают свою деятельность на новых устройствах. Также специалистам службы HR нужно постараться определить оставшихся без обязанностей после автоматизации сотрудников на новые места.
  2. Разъясните, как автоматизация скажется на процессе работы и заработной плате. Для того чтобы сотрудники, которые остались на производстве, были заинтересованы, кадровая служба должна огласить 3 важных аргумента:
  • автоматизация технологических процессов производств способствует легкому прогнозированию и контролю, уменьшая до минимума действие человеческого фактора. Практика, как правило, иллюстрирует значительное повышение качества продукции и производительности. Это влияет на прибавку к зарплате;
  • для сотрудников, которые работают с новым автоматическим оборудованием, открываются возможности для роста в профессии, и тем самым повышается оплата труда;
  • тем сотрудникам, которые занимаются обслуживанием автоматической линии, платят больше, так как их труд более ценен и предполагает определенную квалификацию.
  1. Обучите сотрудников работе на новом оборудовании. Обучение сотрудников необходимо осуществлять в два этапа. На первом нужно подготовить технических специалистов, так как они занимаются стажировкой рабочих. Для данных сотрудников обучение проводит фирма-поставщик. Этот алгоритм помогает предприятию подготовить квалифицированных сотрудников, которые способны вернуть оборудование в рабочее состояние при каких-либо сбоях. Автоматизация процессов производства обычно длится около недели.
  2. Заранее позаботьтесь об уровне технической грамотности рабочих. Сотрудники с низкой квалификацией обычно чаще других выступают против автоматизации. При отборе соискателей следите за техническими компетенциями будущего сотрудника.
  • Система сертификации организации: все, что нужно знать о данной процедуре

Системы автоматизации процессов производства АСУ ТП

Все задачи, которые стоят перед автоматизацией производственного процесса, необходимо решать с помощью применения новейших средств и способов автоматизации. После внедрения автоматизации происходит формирование АСУ ТП (Автоматическая система управления технологическим процессом).

Автоматизация процессов управления производством способствует созданию базы для последующего внедрения четких систем управления предприятием и организацией.

  1. Автоматизация комплекса управления производственными процессами создает условия для передачи контролирующей и управленческой функций сотрудника определенному автоматически работающему оборудованию. Такие устройства помогают осуществлять все этапы работы с информационными потоками (сбор, обработка и др.) К подобному подходу к автоматизированному управлению можно причислить устройства (например, станок), комплекс и линию, которые соединены определенной связью с приборами, осуществляющими контроль и измерение. Подобные приборы оперативно и в логической последовательности осуществляют сбор информации о каком-либо отклонении от существующей нормы в производственном процессе и затем производят анализ полученных данных.
  2. Системы автоматизации процессов производства, которые отвечают за осуществление определенной функции устройства, способны оперативно найти способ регулирования рабочей деятельности всех механизмов, исключив при этом существующие отклонения в режимах производственных процессов и так далее.
  3. Линия связи служит передатчиком команд, которые содержат определенные поправки, а также осуществляет контроль всех поступивших сигналов (команд).
  4. АСУ ТП вместе с новейшими комплексами всех главных и вспомогательных аппаратов и приборов формируют автоматизированные комплексы.
  5. Подобные системы подразумевают осуществление контроля над каким-либо заводом или фабрикой. В функции АСУ ТП может входить контроль над определенным прибором, производственным цехом, конвейером или участком предприятия. Пример: в случае отсутствия в деятельности у выпускающего комплекса необходимых показателей технологических требований, система с помощью определенных каналов может изменить его производственный режим, учитывая все нормативы.

Объекты автоматизации процессов производства и их параметры

При внедрении в производство определенных средств механизации основной задачей будет сохранение в работе оборудования качественных характеристик, что найдет отражение в свойствах произведенной продукции.

В настоящее время эксперты области, как правило, глубоко не вникают в содержание технических характеристик каких-либо объектов. Это объясняется тем, что с точки зрения теории внедрить системы управления можно на любой части производственного процесса.

При рассмотрении в данном плане основ автоматизации процессов производств список объектов механизации будет выглядеть следующим образом:

  • конвейеры,
  • цеха,
  • все существующие агрегаты и установки.

Возможным является сравнение уровня трудности внедрения автоматических систем. Он, несомненно, имеет зависимость от размера предполагаемого проекта.

Что касается характеристик, с которыми автоматические системы осуществляют рабочие функции, то здесь можно отметить выходные и входные показатели .

Входными показателями являются физические черты производимой продукции и свойства объекта.

Выходные показатели – это качественные данные о произведенном продукте.

Регулирующие технические средства автоматизации процессов производства

Специальными сигнализаторами в автоматизированных системах являются регулирующие приборы. В их возможности входит контроль и управление разнообразными технологическими показателями.

В автоматизацию технических процессов и производств входят следующие сигнализаторы:

  • показатели температуры,
  • показатели давления,
  • показатели определенных свойств потока и так далее.

С точки зрения технического подхода устройства могут реализовываться в виде приборов с контактными частями на выходе и отсутствием шкал.

Принцип действия сигнализаторов, которые отвечают за регулирование, может быть разным.

Самыми популярными устройствами по измерению температуры являются ртутные, терморезисторные, манометрические и биометаллические модели.

Конструкция обычно зависит от принципов работы. Однако условия тоже имеют для нее большое значение.

Автоматизация технологических процессов и производств может обуславливаться спецификой деятельности предприятия и, исходя из этого, предполагаться с расчетом на особенности условий применения. Приборы, предназначенные для регулирования, создаются с ориентиром на эксплуатацию при высоком уровне влажности, воздействии химических веществ и физическом давлении.

  • Штрафы ФАС за нарушение закона о рекламе и способы их избежать

Какое ПО выбрать для автоматизации процессов производства

При внедрении автоматизированной системы нужно подобрать качественное программное обеспечение, с надежным уровнем контроля над процессом.

  1. «1С: Комплексная автоматизация».

Эта форма «1С» предполагает большой круг возможностей, которые способствуют автоматизации учета и многих производственных процессов.

Данное программное обеспечение является одним из лучших для проведения автоматизации. Это объясняется наличием удобного интерфейса, помощи и других немаловажных особенностей. Тем не менее, решить все поставленные задачи эта программа не может.

  1. «Крафт».

Это программа, которая осуществляет автоматизацию технологических процессов и производств. Реализует как бухгалтерскую автоматизацию, так и техническую. Однако стоит обратить внимание на то, что программа не располагает функционалом, способным включить абсолютно все направления производственного процесса.

  1. Индивидуальные программы.

Часто бывает, что для автоматизации процессов производства применяются персонально созданные программы. Они разрабатываются для решения конкретных задач, что делает их идеальными в плане использования. Но имеется существенный минус – разработка индивидуальных программ стоит денег, а задача возможного расширения функций решается не так просто.

Существует большое количество программ, которые выполняют автоматизацию технологических процессов и производств. Но не все они являются подходящими для конкретных задач. По этой причине необходимо найти сотрудника, который разбирается в данном вопросе и сможет подобрать наилучший вариант для предприятия.

Мнение эксперта

Не стоит покупать самое дорогое IT-решение

Алексей Каторов ,

директор департамента информационных систем ОАО «Новая перевозочная компания»

В случае если автоматизации процессов производства нельзя избежать, не игнорируйте важный принцип: «лучшее является врагом хорошего». Проще говоря, если у вас уже функционирует какая-либо система, которую некоторые консультанты советуют поменять, не спешите этого делать. Обычно большая часть акционеров заинтересована прежде всего во внедрении учетных систем высокого уровня (аналитика и др.) и меньше всего их интересует производство. Многие новейшие технологии открывают для вас вариант эффективной работы двух систем одновременно. По этой причине не стоит исключать возможность внедрения в работу новой автоматической системы поверх уже имеющейся.

Я не советую вам приобретать самое дорогостоящее IT-решение. Вы рискуете не освоить приобретенную систему с большим функционалом и по истечении 10 лет. Не надейтесь на случай и не игнорируйте накопленный опыт применения автоматизации процессов производства в вашей отрасли. Внедрение каких-либо IT-решений невозможно без активного участия генерального директора.

Этапы разработки и внедрения системы автоматизации процессов производства

Создание АСУ ТП является не простым процессом и имеет несколько стадий :

  • в первую очередь создается техническое задание;
  • создание концепции разработки АСУТП либо создание проекта автоматизированных систем управления стадии «П»;
  • разработка производственного проекта АСУТП, стадия «Р»;
  • внедрение в технологический процесс автоматизированных систем и анализ их работы. Имеются в виду полноценные испытания систем.

Разработка технического задания для внедрения автоматизации процессов производства подразумевает перечень необходимых исследований перед использованием систем на предприятии.

Проектирование автоматизации технологических процессов и производств предполагает задействование ряда специалистов в данной области:

  • сотрудников с экономическим образованием,
  • электромехаников,
  • программистов автоматизационных систем,
  • технологов,
  • сотрудников, специализирующихся на электропроводах.

Исходя из показателей, полученных в ходе исследований, которые проводятся перед внедрением, осуществляется эскизная проработка проекта будущей АСУТП:

  1. В первую очередь осуществляется разработка базы функционала и алгоритма состава автоматизированной системы.
  2. Далее объясняется выбор главных технических компонентов АСУТП и делается предложение, связанное с количеством и номенклатурой.
  3. После автоматизации процессов производства ставятся задачи обновления задействованного оборудования, по причине улучшения производственного процесса благодаря проведенной автоматизации.

После проведения всех необходимых исследований перед внедрением автоматизированных систем создаются положения технического задания , включающие:

  • весь список функционала, который осуществляется АСУТП в проекте;
  • обоснование создания системы с технической и экономической точки зрения;
  • типы и размер работ, которые необходимы для внедрения и проектирования автоматизированных систем;
  • составление плана работ по ремонту, запуску, монтированию и проведению полного перечня испытаний автоматизированных систем.

На стадии выполнения технического проекта осуществляется синтез автоматизационных систем:

  • идет процесс разработки функционального состава автоматизации процессов производства;
  • создается список сигналов, которые воспринимают входные показатели автоматизированных систем. Можно определить характеристики метрологии;
  • определяются технические критерии к приборам, осуществляющим регулирование и контроль технологических показателей. Осуществляется разработка информационно-организационного состава автоматизированных систем.
  • устанавливается состав аппарата;
  • делается выбор датчиков и приборов КИПиА, которые выполняют функции производственных измерений технических параметров;
  • осуществляется подбор автоматики и устанавливается структура устройств технического комплекса.
  • Система стратегического управления: 14 эффективных мероприятий

Мнение эксперта

Сначала автоматизируйте ту операцию, которая задает темп производству

Юрий Титов ,

генеральный директор компании «Кухонный двор», Москва

В первую очередь при автоматизации процессов производства обратите внимание на операцию, которая выполняет начальную функцию. У нас это создание корпусов. Первая операция – распил ДСП. Раньше необходим был подвоз ДСП к станку, в котором принимали участие около семи человек. Погрузчику было нелегко передвигаться в маленьком пространстве, из-за того что сырьем было занято достаточно много места.

Возникали застои, по причине опоздания подвоза ДСП со склада. Мы решили провести автоматизацию, создав автоматический склад с распилом в начале участка. Автоматизированное устройство самостоятельно осуществляет процесс взятия материалов со склада, а затем отправляет на распил. Загрузка склада ДСП происходит несколько раз за неделю. Автоматизация процессов производства помогла нам задействовать не семь человек, а только двоих сотрудников.

Теперь нам известно наверняка количество продукции, которое должен произвести каждый работник на данной операции, и сколько он выпускает в минуту. Компьютерное устройство без ошибок производит расчет показателей по плану, заменив фотографии рабочего процесса, которые являлись основой дневной производительности. Далее мы провели автоматизацию следующих операций: кромление и присадка.

6 советов, которые помогут безболезненно провести автоматизацию

Во-первых , займитесь поиском человека, который по-настоящему интересуется автоматизацией технологических процессов и производств. Это является необходимым условием.

Во-вторых , организуйте группу сотрудников, которые будут заниматься вопросами автоматизации. Отметим важную особенность: не стоит платить лидеру группы в начале проекта, это повлечет за собой требования оплаты за каждый шаг. Оплачивайте результат, но по заранее оговоренной ставке.

В-третьих , вам необходима поддержка руководителей департаментов. Заинтересуйте их идеями автоматизации, проиллюстрируйте выгоду данного процесса.

В-четвертых , требуйте от компании, которая будет осуществлять внедрение, план и бюджет автоматизации. Мы рекомендуем делать заказ быстрой диагностики – это увеличит ваши шансы на более точное определение стоимости внедрения автоматизации.

В-пятых , если для вас необходимым выступает отказ от услуг компании, которая планирует осуществить внедрение, сделайте это. В будущем вы сможете взять на работу программиста, который осуществит необходимые доработки, не делая масштабных изменений.

В-шестых , обязательно оформите соглашение о конфиденциальности с компанией, которая будет осуществлять внедрение автоматизации. В таком договоре стоит указать штрафы в случае нарушения обязательств, прописанных в документе.

  • Планирование производства - фундамент эффективной деятельности предприятия

В какую сумму обойдется автоматизация процессов производства предприятию

В области IT обычно производят расчет показателя TCO – «совокупной стоимости владения». Этот термин обозначает совокупность всех затрат, начиная с покупки информационной системы и заканчивая утилизацией. Расходы не обуславливаются типом информационного продукта, который вы внедряете в своем производстве.

ТСО предполагает следующие затраты:

  1. Приобретение лицензий для программного обеспечения.
  2. Внедрение IT-системы на производстве:
  • анализ состояния предприятия и разработка соответствующей проекту документации;
  • проведение установочных работ и настройки внедряемого программного обеспечения;
  • объединение информационных систем;
  • проведение обучения для сотрудников предприятия.

3. Контроль над системой после внедрения:

  • осуществление программных обновлений;
  • технический контроль;
  • развитие программного обеспечения путем расширения функционала и других факторов.
  1. Осуществление смены информационной системы (переход на другую).

Когда перед компанией возникает необходимость автоматизации процессов производства, многие руководители подходят к выбору систем с точки зрения стоимости лицензий, не учитывая при этом последующие издержки. По этой причине возникает много ошибок, связанных с неправильным выбором системы и расчетом стоимости проекта.

На начальных этапах автоматизации процессов производства, когда вам нужно определиться с поставщиком, генеральному директору и программисту необходимо обсудить и выбрать для предприятия программное обеспечение.

Что касается стоимости лицензий, то здесь цены у разных поставщиков могут отличаться даже в 20 раз. Попытка уменьшить стоимость автоматизации технологических процессов и производств, при условии отсутствия утраты качества, обычно удается максимум на 30 %. Достигнуть этого показателя можно как торгуясь с поставщиком, так и привлекая к процессу внедрения сотрудников. Например, вы можете уменьшить рабочие расходы в пять раз, если в вашем штате имеются компетентные IT-специалисты, которые обладают всеми навыками для развития внедряемой системы без посторонней помощи.

Мнение эксперта

Автоматизация обошлась нам в 2,5 млн долларов

Сергей Сухинин ,

начальник отдела автоматизированных систем управления ОАО «Научно-производственный комплекс «Элара», Чувашия

Наша компания потратила 470 тысяч долларов на покупку лицензии для программы управления базой данных. Совокупные расходы по внедрению системы ERP, которая предполагает автоматизацию процессов управления производством и планированием, обошлись компании в 2,5 миллиона долларов. На этапе производственной эксплуатации мы получили экономический эффект, который появился благодаря внедрению программного обеспечения. Расходы окупились через полтора года после внедрения программы.

Введение

Чтобы различные технические устройства выполняли тре­буемые функции, необходимо организовать тот или иной процесс управления. Процесс управления может быть реализован "руч­ным" способом или с помощью совокупности технических средств, которые, в общем случае, называют системами автома­тического управления,

Системы автоматического управления в сельскохозяйствен­ном производстве и переработке продукции призваны управлять режимами работы оборудования, теплиц, холодильных установок и т.п. Особенностью этих систем является работа с биологиче­скими объектами, животными, растениями и продуктами их пе­реработки.

Необходимость внедрения и развитие систем автоматическо­го управления способствовали созданию отдельного научно-технического направления, которое включает элементную базу, теоретические вопросы анализа и синтеза, вопросы проектирова­ния и обеспечения требуемой надёжности. Вместе с тем это от­дельное направление имеет тесную связь с электроникой, элек­тротехникой, математикой и другими разделами науки и техники. В развитие систем автоматики внесли вклад ученые Н.Н.Боголюбов, И.Ф.Бородин, Н.Винер, Н.Е.Жуковский, А.Н.Колмогоров, Н.М.Крылов, А.В.Михайлов, Г.Найквист, В.Д.Шеповалов, С.А.Чаплыгин, и многие другие ученые.

Предметом дисциплины "Автоматика" является - теоретиче­ские основы и технические средства автоматики.

Основы теории автоматического управления

Лекция 1 . «Принципы построения автоматизированных производств»

Автоматизация производства

Автоматика - отрасль науки и техники, охватывающая тео­рию и устройства средств и систем автоматического управления машинами и технологическими процессами Она возникла в 19 ве­ке с появлением механизированного производства на базе пря­дильных и ткацких станков, паровых машин и др., которые за­менили ручной труд и дали возможность повысить его произво­дительность.

Автоматизации всегда предшествует процесс полной механи­зации - такого производственного процесса, в котором человек не затрачивает на выполнение операций физической силы.

По мере развития техники функции управления процессами и машинами расширялись и усложнялись. Человек уже во многих случаях не был в состоянии управлять механизированным произ­водством без специальных дополнительных устройств. Это обусло­вило возникновение автоматизированного производства, при ко­тором работники высвобождаются не только от физического тру­да, но и от функций контроля за машинами, оборудованием, произ­водственными процессами и операциями, а также управления ими.

Под автоматизацией производственных процессов пони­мают комплекс технических мероприятий по разработке но­вых технологических процессов и создание производства на основе высокопроизводительного оборудования, выпол­няющего все основные операции без непосредственного уча­стия человека.


Автоматизация способствует значительному повышению про­изводительности труда, улучшению качества продукции и усло­вий труда людей

В сельском хозяйстве, пищевой и перерабатывающей про­мышленности автоматизируется контроль и управление темпера­турой, влажностью, давлением, регулирование скорости и перемещение, сортирование по качеству, упаковка и многие другие процессы и операции, обеспечивая более высокую их эффективность, экономию труда и средств.

Автоматизированные производства по сравнению с не автоматизированными обладают определенной спецификой:

· для повышения эффективности они должны охватывать большее количество разнородных операций;

· необходима тщательная проработка технологии, анализ объектов производства, маршрутов движения и операций, обеспечения надежности процесса с заданным качеством;

· при широком ассортименте выпускаемой продукции и се­рости работы технологические решения могут быть многовариатными;

· повышаются требования к четкой и слаженной работе раз­личных служб производства.

При проектировании автоматизированного производства должны быть соблюдены следующие принципы:

1. Принцип завершенности. Следует стремиться к выполнению всехопераций в пределах одной автоматизированной производственной системы без промежуточной передачи полуфабрикатов

в другие подразделения. Для реализации этого принципа необходимо обеспечить:

Технологичность продукта, т.е. на его изготовление должно расхсодоваться минимальное количество материалов, времени и средств:

Унификацию методов обработки и контроля продукта;

Расширение типажа оборудования с повышенными технологическими возможностями для обработки нескольких видов сырьяили полуфабрикатов.

2. Принцип малооперационной технологии. Количество опе­раций промежуточной обработки сырья и полуфабрикатов должно быть сведены к минимуму, а маршруты их подачи - оптими-зированы.

3. Принцип малолюдной технологии. Обеспечение автомат­икой работы на протяжении всего цикла изготовления продукта. Для этого необходимо стабилизировать качество входного сырья, повысить надежность оборудования и информационного обеспечения процесса.

4. Принцип безотладочной технологии. Объект управления не должен требовать дополнительных наладочных работ после того, как он пущен в эксплуатацию.

5. Принцип оптимальности. Все объекты управления и служ­бы производства подчинены единому критерию оптимальности, например, выпускать продукцию только высшего качества.

6. Принцип групповой технологии. Обеспечивает гибкость производства, т.е. возможность перехода с выпуска одного про­дукта на выпуск другого. В основе принципа лежит общность операций, их сочетаний и рецептур.

Для серийного и мелкосерийного производства характерно создание автоматизированных систем из универсального и агре­гатного оборудования с межоперационными емкостями. Это обо­рудование в зависимости от перерабатываемого продукта может переналаживаться.

Для крупносерийного и массового выпуска продукции авто­матизированное производство создается из специального обору­дования, объединенного жесткой связью. В подобных производ­ствах применяется высокопроизводительное оборудование, на­пример, роторное для разливки жидкостей в бутылки или пакеты.

Для функционирования оборудования необходим промежу­точный транспорт для сырья, полуфабрикатов, компонентов, раз­личных сред.

В зависимости от промежуточного транспорта автоматизиро­ванные производства могут быть:

Со сквозной транспортировкой без перестановки сырья, по­луфабриката или сред;

С перестановкой сырья, полуфабрикатов или сред;

С промежуточной емкостью.

По видам компоновки оборудования (агрегатирования) разли­чают автоматизированные производства:

Однопоточные;

Параллельного агрегатирования;

Многопоточные.

В однопоточном оборудование расположено последовательно по ходу выполнения операций. Для увеличения производитель­ности однопоточного производства операция может выполняться на однотипном оборудовании параллельно.

В многопоточном производстве каждый поток выполняет аналогичные функции, но работает независимо один от другого.

Особенностью сельскохозяйственного производства и пере­работки продукции является быстрое снижение ее качества, на­пример, после забоя скота или съема плодов с деревьев. Это тре­бует такого оборудования, которое имело бы высокую мобиль­ность (возможность выпуска широкого ассортимента продуктов из однотипного сырья и переработки различных видов сырья на однотипном оборудовании).

Для этого создаются переналаживаемые производственные системы, обладающие свойством автоматизированной перена­ладки. Организационным модулем таких систем является произ­водственный модуль, автоматизированная линия, автоматизиро­ванный участок или цех.

Производственным модулем называют систему, состоящую из единицы технологического оборудования, оснащенного авто­матизированным устройством программного управления и сред­ствами автоматизации технологического процесса, автономно функционирующую и имеющую возможность встраиваться в систему более высокого уровня (рис. 1.1).

1- оборудование для вы­полнения одной или нескольких операций; 2- управляющее устройство; 3- погрузочно-разгрузочное устройство; 4- транспортно-накопительное устройство (промежуточная емкость); 5- контрольно-измерительная система

Рисунок 1.1 - Структура производст­венного модуля

Производственный модуль может включать в себя, например, сушильную камеру, контрольно-измерительную систему, погрузочно-разгрузочную и транспорт­ную системы с локальным управлением или смесительную уста­новку с аналогичным добавочным оборудованием.

Частным случаем производственного модуля является произ­водственная ячейка - комбинация модулей с единой системой измерения режимов работы оборудования, транспортно- накопительной и погрузо-разгрузочной системами (рис. 1.2). Производственная ячейка может встраиваться в системы более высокого уровня.

1- оборудования для выполнения одной или не­скольких операций; 2- приемный бункер; 3-погрузочно-разгрузочное устройство; 4- конвейер; 5- проме­жуточная емкость; 6- управляющий компьютер; 7- контрольно-измерительная система.

Рисунок 1.2 - Структура производ­ственной ячейки

Автоматизированная ли­ния - переналаживаемая систе­ма, состоящая из нескольких производственных модулей или ячеек, объединенных еди­ной транспортно- складской системой и системой автоматического управления технологического процесса (АСУ ТП). Оборудование автоматизированной линии расположено в приня­той последовательности выполнения технологических операций. Структура автоматизированной линии изображена на рис. 1.3.

1,2,3,4- производствен­ные ячейки и модули; 5- транспортная система; 6-склад; 7- управляющий компьютер.

Рисунок 1.3 - Структура автоматизированной линии

В отличие от автоматизированной линии на переналаживае­мом автоматизированном участке предусмотрена возможность изменения последовательности использования технологического оборудования. Линия и участок могут иметь отдельно функцио­нирующие единицы технологического оборудования. Структура автоматизированного участка приведена на рис. 1.4.

1,2,3- автоматизиро­ванные линии; 4- производственные ячейки; 5- производственные модули; 6- склад; 7- управляющий компьютер

Рисунок 1.4 - Структура автоматизированного участка

Решение задач автоматизации

Вопрос 3 Производственный и технологический процессы автоматизированного производства

Следящая система

Следящая система - автоматическая система, в которой выходная величина воспроизводит с определенной точностью входную величину, характер изменения которой заранее не известен.

Следящие системы используют для различных целей. В качестве выходной величины следящей системы можно рассматривать совершенно различные физические величины.Одной из наиболее широко распространенных разновидностей следящих систем являются системы управления положением объектов. Такие системы можно рассматривать как дальнейшее развитие и усовершенствование систем дистанционной передачи угловых или линейных перемещений, в которых регулируемой величиной обычно является угол поворота объекта.

На элемент сравнения (рис. 1, г) от задающего элемента, связанного с входным валом следящей системы, поступает входная величина α ВХ. Сюда же от объекта управления, связанного с выходным валом системы, поступает значение угла обработки а ВЫХ. В результате сравнения этих величин на выходе элемента сравнения появляется рассогласование θ = α ВХ - а ВЫХ.

Сигнал рассогласования с выхода элемента сравнения поступает на преобразователь (Пр), в котором угол θ преобразуется в пропорциональное ему напряжение U 0 - сигнал ошибки.

Однако в подавляющем большинстве случаев мощность сигнала ошибки недостаточна для приведения в действие исполнительного двигателя (М). Поэтому между преобразователем и исполнительным двигателем включают усилитель, обеспечивающий необходимое усиление сигнала ошибки по мощности. Усиленное напряжение с выхода усилителя поступает на М, который приводит в действие объект управления, а перемещение а ВЫХ последнего передается на принимающий элемент измерительной схемы, т. е. на элемент сравнения.

Адаптивная система

Адаптивная (самоприспособляющаяся) система - система автоматического управления, у которой автоматически изменяется способ функционирования управляющей части для осуществления в каком-либо смысле наилучшего управления. В зависимости от поставленной задачи и методов ее решения возможны различные законы управления, поэтому адаптивные системы разделяют на следующие виды:

§ адаптивные системы функционального регулирования, где управляющее воздействие является функцией какого-либо параметра, например, подача - функция одной из составляющих силы резания, скорость резания - функция мощности;

§ адаптивные системы предельного (экстремального) регулирования, которые обеспечивают поддержание предельного значения одного или нескольких параметров в объекте;

§ адаптивные системы оптимального регулирования, в которых учитывается совокупность многих факторов с помощью комплексного критерия оптимальности.

В соответствии с этим критерием осуществляется изменение регулируемых параметров и величин, например, поддержание в станке режима обработки, обеспечивающего максимальную производительность и наименьшую себестоимость обработки, определяется заданием оптимальных значений параметров (скоростей сил резания, температуры и т. д.), от которых зависят производительность и себестоимость процесса обработки.

Технологическая операция

Технологической операцией называют законченную часть технологичес­кого процесса, выполняемую на одном рабочем месте. Следует учитывать, что рабочим местом является элементарная единица структуры предпри­ятия, где размещены исполнители работы, обслуживающие технологическое оборудование, на ограниченное время оснастка и предметы труда. Напри­мер, обработку ступенчатого вала можно выполнять в следующей последо­вательности: на первой операции подрезают торцы и зацентровывают вспо­могательные базы, на второй – обтачивают наружную поверхность, на третьей – шлифуют эти поверхности.

Типовой технологической операцией называют технологическую опе­рацию, характеризуемую единством содержания и последовательности тех­нологических переходов для группы изделий с одними конструктивными и технологическими признаками.

Групповой технологической опе­рацией называют технологическую операцию совместного изготовления группы изделий с разными конструк­тивными, но общими технологически­ми признаками.

Виды технологических операций

Технологический процесс можно по­строить по принципу концентрированных или же дифференцированных тех­нологических операций.

а – последовательная; б – параллель­ная; в – параллельно-последовательная операции

Рисунок 3.2 - Основные виды концентра­ции

Концентрированнойтехнологиче­ской операцией - опе­рация, включающая в себя боль­шое количество технологических пере­ходов. Как правило, она имеет многоинструментальную налад­ку. Пределом концентрации операций является полная обработка детали на одной операции.

Дифференцированнойоперацией называют операцию , состоящую из минимального количества переходов. Пределом дифференциации является выполнение технологической операции, состоящей из одного технологиче­ского перехода.

Достоинства дифференциации операций состоят в следующем: приме­няется сравнительно простое и дешевое оборудование, простота и незначи­тельная сложность их наладки, создается возможность применения более высоких режимов обработки.

Недостатки принципа дифференциации операций: удлиняется технологи­ческая линия, увеличивается количество потребного оборудования и производ­ственной площади, увеличивается число рабочих, большое число установок.

Технологический переход

Технологическим переходом называют законченную часть технологиче­ской операции, выполняемая одними и теми же средствами технологиче­ского оснащения при постоянных технологических режимах и установе. Если при обточке валика сменяли инструмент, то обработка этим инстру­ментом той же поверхности заготовки будет являться новым технологиче­ским переходом. Но сама смена инструмента является вспомога­тельным переходом.

Вспомогательным переходом называют законченную часть технологической операции, состоящей из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предмета труда, но необходимы для выполнения технологического перехода. Переходы могут быть совмещены во времени за счет одновременной обработки не­скольких поверхностей, т. е. могут осу­ществляться последовательно (черно­вая, получистовая, чистовая обточка ступенчатого вала или сверления четы­рех отверстий одним сверлом), парал­лельно (обточка ступенчатого вала не­сколькими резцами или сверление четы­рех отверстий, сразу четырьмя сверлами) или параллельно-последовательно (после обточки ступенчатого вала одновременно несколькими резцами, одновременное снятие фасок несколькими фасочными резцами или сверление четырех отверстий последовательно двумя сверлами).

Установ – часть технологической операции, выполняемая при неизменен­ном закреплении обрабатываемых загото­вок или собираемой сборочной единицы. Поворот деталей на какой-либо угол явля­ется новым установом. Если валик внача­ле обтачивают в трехкулачковом патроне с одного установа, а затем его перевернут и обточат, то это потребует два установа при одной операции (рисунок 3.4).

Рисунок 3.4 - Схема первого (а) и второго (б) установа

Позиция

Установленная и закреп­ленная на поворотном столе заготовка, подвергаемая сверлению, рассверлива­нию и зенкерованию, имеет один установ, но с поворотом стола она будет за­нимать новую позицию.

Позицией называют фиксированное положение, занимаемое жестко закрепленной обрабатываемой заготовкой или собираемой сборочной единицей со­вместно с приспособлением относительно инструмента или неподвижной части оборудования при выполнении определенной части операции. На многошпин­дельных автоматах и полуавтоматах заготовка при одном ее закреплении зани­мает различные позиции относительно станка. Заготовка перемещается в новое положение вместе с зажимным устройством.

При разработке технологического процесса обработки заготовок, пред­почтительно заменять установы позициями, так как каждый дополнитель­ный установ вносит свои погрешности обработки.

В условиях автоматизированного производства под операцией следует понимать законченную часть технологического процесса, выполняемую непрерывно на автоматической линии, которая состоит из нескольких единиц технологического оборудования, связанных автоматически действующими транспортно-загрузочными устройствами. Кроме основных технологических операций в состав ТП включают ряд необходимых для его осуществления вспомогательных операций (транспортных, контрольных, маркировочных и т.п.).

По компоновочной схеме

По виду транспорта различают автоматические линии:

а) со сквозным транспортированием заготовки между станками (применяется при обработке корпусных заготовок);

б) с боковым транспортированием (применяется при обработке коленчатых валов, гильз и т. д.);

в) с верхним транспортированием (применяется при обработке валов, зубчатых колес, фланцев и т. д.);

г) с комбинированным транспортированием;

д) с роторным транспортированием, используемым в роторных АЛ, в которых все технологические операции выполняются при непрерывном транспортировании заготовок и инструмента.

По степени гибкости:

а) синхронные или жесткие;

б) несинхронные или гибкие.

В синхронных автоматических линиях перемещение заготовок осуществляется через синхронизированные промежутки времени. Время обработки на рабочей позиции равно или кратно такту. Такт – интервал времени, через который периодически производится выпуск изделия определенного типа. Такие линии применяются в крупносерийном и массовом производствах.

В несинхронных автоматических линиях обработанные детали перемещаются по мере готовности выполняемой операции. Так как время обработки на каждой позиции разное, то нужны промежуточные накопители. Эти линии применяются в серийном и опытном производствах.

Вопрос 26 Вспомогательные устройства транспортно-накопительных подсистем: поддоны, палеты, толкатели. устройства поворота и ориентации деталей, устройства деления потоков (назначения, конструкции, обсласть применения)

Делители потока.

Применяются для деления потоков в ветвящихся автоматических линиях (рис. 1.). Делятся по принципу движения заслонок: качающихся, возвратно-поступательных и вращающихся.

Деление осуществляется посредством:

Качающихся заслонок поворачивающейся под действием самой заготовки (рис. 1.,а);

С помощью возвратно – поступательных заслонок (рис. 1.,б,в);

Применяются в том случае когда возникает необходимость в разделении общего потока на несколько самостоятельных потоков между однотипными станками. Устанавливаются между механизмом ориентации и накопителем или между накопителем и питателем. Конструкции разнообразны и зависят от формы и размера деталей и от конструкции накопителей и питателей.

Рис. 1. Делители потоков: а.- с чающимися заслонками; б.в – с помощью возвратно-поступающих заслонок.

Ориентирующие устройства.

Во многих случаях в автоматизированном производстве заготовка или деталь должны быть поданы в рабочую зону или на транспортные системы или к захватным или к поворотным устройствам и т.д. в ориентированном положении. Для этого используются различной конструкции ориентирующие устройства в виде шиберов, секторов с возвратно – поступательными или качающимися движениями, вращающихся дисков, лопатных механизмов, трубок втулок и т.п. Схемы ориентирующих устройств приведены на рис. 2.и 3.

Ориентация деталей возможна также и при их транспортировании При этом используется нессиметричность формы деталей и расположение центра тяжести. Способ ориентирования может быть пассивным и активным.

Пассивные ориентирующие устройства получили широкое распространение при вибрационном транспортировании деталей. Общим в принципе их действия является то, что неправильно ориентированные детали сбрасываются с транспортного устройства и возвращаются к началу потока, а далее следуют лишь правильно ориентированные.

Активные ориентирующие устройства придают детали сложное положение в пространстве в независимости от их исходного положения при поступлении в ориентирующее устройство. Принцип принудительного изменения используют так же при необходимости переориентации. Для несложных деталей малых размеров – применяют простые ориентирующие устройства, для дет. сложных форм или тяжёлых – ориентирующие устройства типа кантователей или универсальных поворотных устройств. Иногда используются действие магнитного поля.

Ориентируемые заготовки условно делят на:

Заготовки простой формы, ориентируемые с помощью вырезов в лотках, скосов, отсекателей;

Заготовки со смещённым центром тяжести, которые ориентируются разом или при повороте во время прохождения их через щель или вырез в лотке;

Симметричные и ассиметричные заготовки, которые ориентируются при провале в спец. окно лотка (ориентация по трафарету).

Заготовки ориентируемые с помощью спец. устройств.

Плоские заготовки типа кругов, колец (рис 2.,а) с d >h , ориентируются с помощью спирального лотка рабочая поверхность которого наклонена по радиусу к центру бункера под b =3-5 0 для обеспечения сброса второго слоя заготовок. Буртик лотка m <h .

Колпачки с d ³ h ориентируются пассивным способом с помощью выреза с язычком (рис 2.,б).

Заготовки ориентированные донышком вниз проходят по язычку не опрокидываясь, т.к. язычок является достаточной опорой для обеспечения устойчивого положения заготовки. Заготовки расположенные отверстием вниз, надавливаются на язычок теряют равновесие и падают в бункер.

Цилиндры с l > d ориентируются пассивным способом (рис. 2., в) для сброса неправильно ориентированных заготовок под лотком установлен скос, расположенным на высоте 1,1 d от поверхности лотка.

Для ориентировании ступенчатых дисков применяют пассивный способ (рис 2.,г) с использованием особенностей формы. Заготовки, расположенные большим диаметром вниз свободно проходят мимо сбрасывателя и перемещаются далее по лотку.

Рис. 2. Схемы ориентирующих устройств.

Заготовки с большим диаметром вверх – сталкиваются сбрасывателем с лотка в бункер.

Заготовки типа стержней с головками (рис 2.,д) ориентируются активным способом при помощи прорези, выполненным на прямолинейном участке лотка.

Для активной ориентации валиков с уступом (рис.3.,а) используют смещение центра тяжести.

Для ориентации тонких заготовок в виде скоб, треугольников, секторов применяют пассивный способ (рис. 3.,б). Для пластин Т образной формы – активный способ (рис.3.,в).

При необходимости переориентации заготовок в ходе техпроцесса применяют способ активной ориентации.

Рис. 3. Схемы ориентирующих устройств.

Поворотные устройства.

Используют в станках для перемещения обрабатываемой детали или инструмента на позицию. Это многопозиционные столы и барабаны, блоки многошпиндельных автома­тов, револьверные головки, дисковые магазины и делительные устройства (рис. 4.).

К поворотным устройствам предъявляются требования точности поворота на заданную угловую величину, точности и жесткости фикса­ции в рабочей позиций, осуществление поворота за минимальное время, при ограничениях на возникающие при этом динамические нагрузки.

Точность поворотных устройств, следует оценивать с вероятностных позиций. Под точностью здесь принять понимать точность углового позиционирования; характеризующуюся текущей погрешностью угла поворота. В лучших системах управления автоматиче­ских поворотных устройств, для минимизации погрешностей команды подают с соответст­вующим упреждением. Точность современных поворотных станков с ЧПУ составляет 3..6 угловых секунд.

Быстродействие характеризуется средней скоростью поворота w ср – до 1,0 с -1 . Универсальность оп­ределяется возможным диапазоном числа делений, который в современных автоматиче­ских поворотных столах равен 2...20000 и выше.

В качестве привода поворотных устройств используют шаговые двигатели (рис.4,а), позво­ляющие получать широкую универсальность по диапазону делений, состыковываться с системами управления с ЧПУ или ЭВМ. Поворотные устройства с гидроприводом (рис.4,б) и с маль­тийским механизмом (рис.4,в) широко применяются в станках и револьверных головках с постоян­ным фиксированным углом поворота.

Рис. 4 Схемы поворотных устройств.

Применяют такие схемы с периодическим включе­нием кинематической цепи различными муфтами (рис.4,в,г), и храповые механизмы (рис.4,е)

Транспортным пакетом называется укрупненная грузовая единица, сформированная из штучных грузов в таре и без нее, с применением различных способов и средств пакетирования, сохраняющая форму в процессе обращения и обеспечивающая возможность комплексной механизации погрузочно-разгрузочных и складских операций.

Одним из основных средств пакетирования являются поддоны (плоские, стоечные и ящичные).

Поддоны для гибких автоматизированных производств выбирают в соответствии с теми же методическими принципами, которые изложены выше применительно к созданию механизированных и автоматизированных складов любых типов.

Все поддоны можно классифицировать :

По назначению- транспортные и технологические (кассеты, спутники);

По роду транспортируемых грузов- универсальные (для грузов широкой номенклатуры) и специальные (для определенных грузов);

По конструкции (плоские, стоечные, ящичные, одно- и двухна-стильные, одно- и двухзаходные);

По материалу (металлические - из стали или легких сплавов, деревянные, пластмассовые, картонные, композитные с применением древесно-стружечных плит и других материалов);

По продолжительности использования (разового использования, многооборотные);

По области применения (внутрискладские поддоны, для внутризаводских перевозок, для внешних магистральных перевозок);

По размерам (150 х 200; 200 х 300; 300 х 400; 400 х 600; 600 х 800; 800 х 800; 800 х 1000; 800 х 1200; 1600 х 1000; 1600 х 1200).

Многооборотные поддоны являются частью транспортно-складского оборудования ГАП, участка, цеха, предприятия. Поддоны разового использования можно рассматривать как разновидность транспортной упаковки грузов.

Особенностью специальных технологических поддонов для ГАП является то, что на них определенные грузы (заготовки, полуфабрикаты, детали) располагают в фиксированном положении, а иногда и закрепляют заранее, как, например, на поддонах-спутниках многооперационных сверлильно-фрезерно-расточных станков, и подают на них детали на станок непосредственно в зону обработки.

Поддоны-кассеты и поддоны-спутники изготовляют штампованными, сварными, литыми, и они могут служить самостоятельным устройством для формирования грузовой транспортно-складской единицы, или их укладывают на стандартные поддоны.

Транспортно-складские поддоны универсальны по роду размещаемых в них грузов и могут быть металлическими или пластмассовыми, а по конструкции плоскими, стоечными и ящичными.

Перемещения деталей типа тел вращения в ГПС осуществляются чаще всего с использованием простейших транспортных палет без закрепления на них изделий. Такие палеты одновременно выполняют
функции транспортирования и складирования.

Существуют три их разновидности:

1) одиночные палеты, которые перемещаются поодиночке и не могут быть уложены в несколько ярусов;

2) выдвижные палеты, установленные в специальных контейнерах, с возможностью выдвижения-задвижки;

3) многоярусные палеты, которые можно располагать поблизости от РМ одна на другой, в штабелях.

Перспективным является создание универсальных многопредметных палет на основе универсальных модулей. Такие палеты состоят из рамы обеспечивающей возможность обработки различных по форме изделий на различных РМ, вставок, которые используются для установки специальных элементов, служащих для размещения заготовок (деталей); форма и размеры этих элементов определяются формой и размерами заготовок (деталей).

Несущая рама (сварная стальная конструкция) имеет размеры европалет (1200 х 800 мм), хотя могут быть использованы и меньшие габариты. Имея гладкую опорную поверхность, рама может быть установлена на полу либо перемещаться на роликах или с помощью цепных транспортеров. Расположенные поперек или вдоль рамы защитные трубки предохраняют изделия от повреждений в ходе транспортирования. В углах рамы приварены подпорки для укладывания изделий в несколько ярусов. Расстояния между ярусами могут быть изменены с помощью вставляемых мерных стержней.

Для выбора палет можно использовать следующие критерии: соответствие габаритам европалет; масса изделий и палет; количество изделий, размещенных на палете (зависит от размеров и формы изделий); минимальное штучное время обработки одного изделия; требуемое время безлюдной работы ГПС.

Для изделий, имеющих сравнительно малые размеры и длительное время обработки, когда запаса изделий на одной-двух палетах достаточно для обеспечения устойчивой работы ГПС, использовать одиночные палеты;
- для крупногабаритных изделий с малым временем обработки применять выдвижные и многоярусные палеты с дополнительными устройствами для манипулирования ими.

К таким палетам относятся палеты со смонтированными на них крепежными приспособлениями или специальные транспортные палеты. Время, необходимое для замены палет, можно значительно сократить, вынеся действия закрепления-открепления заготовок из рабочей зоны на дополнительный носитель сменных палет, который обеспечивает быстрый их возврат обратно в рабочую зону.

Наиболее распространены станочные (входящие в комплектацию ГПМ), транспортные и вспомогательные палеты.

Чаще всего в ГПС используются палеты, служащие одновременно как для базирования и закрепления деталей, так и для транспортирования и манипулирования ими. Это обеспечивает гибкость транспортной подсистемы, поскольку, с одной стороны, все палеты имеют унифицированную рабочую поверхность, а с другой - столы системы транспортирования и манипулирования приспособлены для использования палет конкретного типа.

В случае использования станочных палет, входящих в ГПМ, заготовка крепится на них вне пределов рабочей зоны, параллельно с обработкой иной детали. После этого она перемещается в рабочую зону, где автоматически фиксируется для обработки.

Вопросы к экзамену по

Вопрос 1 Цель и задачи автоматизации производственных процессов. Виды автоматизации производственных процессов

Основными целями автоматизации технологического процесса являются :
-- повышение эффективности производственного процесса;
-- повышение безопасности производственного процесса.

Цели достигаются посредством решения следующих задач автоматизации технологического процесса:
-- улучшение качества регулирования;
-- повышение коэффициента готовности оборудования;
-- улучшение эргономики труда операторов процесса;
-- хранение информации о ходе технологического процесса и аварийных ситуациях.

Под термином «автоматизация» понимается совокупность методических, технических и программных средств, обеспечивающих проведение процесса измерения без непосредственного участия человека. Цели автоматизации представлены в табл. 1.

Таблица 1

Цели автоматизации
Научные Технические Экономические Социальные
1. Повышение эффек­тивности и качества научных результатов за счет более полного исследования моделей 2. Повышение точности и достоверности результатов исследова­ний за счет оптимиза­ции эксперимента. 3. Получение качествен­но новых научных ре­зультатов, невозмож­ных без ЭВМ. 1. Повышение каче­ства продукции за счет повторяемости операций, увеличения числа измере­ний и получения более полных дан­ных о свойствах изделий. 2. Повышение на­дела точности изделий за счет получения более полных данных о процессах старения и их пред­шественниках. 1. Экономия трудо­вых ресурсов за счет замены труда чело­века трудом маши­ны. 2. Сокращение за­трат в промыш­ленности за счет уменьшения тру­доемкости работ. 3. Повышение про­изводительности труда на основе оптимального рас­пределения работ между человеком и машиной и ликвида­ции неполной загрузки при эпизо­дическом обслужи­вании объекта. 1. Повышение интеллектуального потенциала за счет поручения рутин­ных операций ма­шине. 2. Ликвидация слу­чаев занятости пер­сонала операций в нежелательных условиях. 3. Освобождение человека от тяже­лого физического труда и исполь­зование сэконом­ленного времени для удовлетворения духовных потреб­ностей.

Задачами автоматизации являются:

Устранение или минимизация «человеческого фактора» при выполнении функций системой или прибором;

Достижение заданных показателей качества при реализации автоматизируемых функций.

Решение задач автоматизации технологического процесса осуществляется при помощи внедрения современных методов и средств автоматизации. В результате автоматизации технологического процесса создается АСУ ТП.

Автоматизация производственных

процессов

1.1. Основы, терминология и направления АПП.

Одним из основных направлений деятельности человека является совершенствование процессов производства с целью облегчения тяжёлого физического труда и повышение эффективности процесса в целом – это направление может реализоваться через автоматизацию производственных процессов.

Итак, целью АПП является:

- повышение производительности;

- повышение качества;

- улучшений условий труда.

Цель рождает вопросы, что и как автоматизировать, целесообразность и необходимость автоматизации и др. задачи.

Как известно технологический процесс состоит из трёх основных частей:

- рабочего цикла, - основной тех. процесс;

- холостых ходов, - вспомогательных операций;

- транспортно – накопительных операций.

Основной тех. процесс тесно связан с СПИД. Рассмотрим СПИД:

С – это автоматизация рабочих и холостых ходов всех механизмов станка (авт.гл. движ., подач и вспом. операций).

П – автоматизация установки, фиксации деталей на станке.И – требования АПП к инструменту.

Д – технологические требования АПП к детали. Кроме того,

Вспомогательных операций – это автоматизация загрузки, разгрузки, установки, ориентации, фиксации, транспортировки, накоплению и контролю детали. Из всего выше сказанного видно, что АПП имеет комплексный подход и, не

решив одну задачу, можем не достигнуть необходимого эффекта. Автоматизация – направление развития производства, характеризуемое ос-

вобождением человека не только от мускульных усилий, для выполнения тех или иных движений, но и от оперативного управления механизмами выполняющими эти движения.

Автоматизация может быть частичной или полной.

Частичная автоматизация – автоматизация части операции по управлению производственным процессом при условии, что остальная часть всех операций выполняется автоматически (управление и контроль человеком).

Примером может служить – автом. линия (АЛ), состоящая из нескольких станков автоматов и имеющих автоматическую межоперационную транспортную систему. Управление линии осуществляется одним процессором.

Полная автоматизация – характеризуется автоматическим выполнением всех функций для осуществления производственного процесса без непосредственного вмешательства человека в работу оборудования. В обязанности человека входят настройка машины или группы машин, включение и контроль.

Пример: автоматический участок или цех.

1.2. Организационно – технические особенности автоматизации.

Анализируя тенденцию и историю развития автоматизации произв. процессов, можно отметить четыре основных этапа, на которых решались различные по своей сложности задачи.

Это: 1. Автоматизация рабочего цикла создание машин автоматов и полуавтоматов.

2. Автоматизация систем машин, создание АЛ, комплексов и модулей.

3. Комплексы автоматизации производ. процессов с созданием автоматических цехов и заводов.

4. Создание гибкого автоматизированного производства с автоматизацией серийного и мелкосерийного производства, инженерного и управленческого труда.

1 На первом этапе – модернизировалось универсальное оборудование. Как известно время обработки одного изделия опр-ся по формуле:

T = t Р + tХ

Таким образом, для повышения производительности работы оборудования сокращалось время tР и tХ и совмещалось tР и tХ значит, если машина кроме рабочих ходов (tР ) могут самостоятельно выполнять холостые хода (tХ ), то она представляет собой автомат.

Необходимо учитывать, что под холостыми ходами следует понимать не только перемещение отдельных узлов станка без обработки, но и загрузку, ориентацию детали, их фиксацию. Однако, как показала практика, автоматизация универсальных станков, с точки зрения производительности имеет свои пределы, т.е. рост производительности труда составил не выше 60%. Поэтому в дальнейшем стали создавать специальные станки автоматы с применением новых принципов:

Многоинструментальные и многопозиционные автоматы применялись в поточных линиях, что явилось высшей формой первого этапа автоматизации (структурная схема см. табл.1).

Структурная схема автомата №1

Автомат (прутковый)

Двигательный

Передаточный

Исполнительный

механизм

механизм

механизим

Механизм

Механизм

Механизм

рабочих ходов

холостых ходов

управления

Продольныйсуппорт Поперечныйсуппорт1 Поперечныйсуппорт2 Поперечныйсуппорт3 Поперечныйсуппорт4 Поперечныйсуппорт5 Резьбонарезноеприспособ.

Механизмподачипрутка Механизмзажима Механизмповорота шпиндельногоблока Механизмфиксации

Распред. вал Механизмобгона Тормоза Механизмвыключения при отсутствиипрутка

2 На втором этапе – создаётся АЛ (структурная схема см. табл.2).

АЛ называется – автоматическая система машин расположенных в техноло-

гической последовательности, объединённых средствами транспортировки, управления, автоматически выполняющих комплекс операций кроме контроля и наладки.

Создание АЛ потребовало решения более сложных задач. Так одна из них – - Создание автоматической системы межстаночной транспортировки обрабатываемых деталей, с учётом неодинакового ритма работы станков (время на операции разное); а также не совпадение по времени их простоев из-за возникающих неполадок. Система межстаночной транспортировки должна включать не только транспортёры, но и автоматические магазины накопители для создания расходования межоперационных заделов, устройств управления и блокировки системы машин. При этом необходимы не только согласование между собой рабочих циклов отдельных машин, а так же транспортирующих механизмов, но и блокировок на случай всевозможных неполадок (поломки, выход размеров за пределы поля

допуска и т.п.).

На втором этапе автоматизации решается и задача: создание средств автоматизированного контроля , в том числе активного контроля с корректировкой работы станка.

Экономический эффект достигается не только повышением производительности и значительным сокращением затрат ручного труда благодаря автоматизации межстаночной транспортировки, контроля, уборки стружки.

Структурная схема АЛ табл. №2

3 Третьим этапом автоматизации явл-ся комплексная автоматизация производственных процессов – создание автоматических цехов и заводов.

Автоматич. цехом или заводом называется цех или завод, в котором основные производственные процессы осуществляются на АЛ.

Здесь решаются задачи автоматизации межлинейной и межцеховой транспортировки, складирования, уборки и переработки стружки, диспетчерского контроля и управления производством (структура автом. цеха см. схему, рис.3).

Структура автоматического цеха табл. №3

Автомтатический

Автоматические

Системынелинейного

транспорта

управления

А. линия 1 А. линия 2

А. линия i- 1 А. линия i

Элеваторы

Транспортёр

Дозаторы

СУ запасн. деталями

СУ аварийной блокировки

СУ подсчёта продукции диспетчеров

Здесь элементами выполняющие рабочие ходы, являются уже АЛ со своими технологическими роторными машинами, механизмами транспортировки, управления и т.д.

В автом. цехах и заводах межлинейное транспортирование и накопление заделов являются холостыми ходами.

Система управления цеха также выполняет новые более сложные задачи. Важнейшей особенностью комплексной автоматизации производственных процессов как нового этапа технического прогресса явл-ся широкое применение вычислительной техники, которая позволяет решать не только задачу управления

производством, но и гибкого управления тех. процессами.

4 Гибкие автоматизированные системы – какчетвёртый этап автоматизации представляют собой наивысшую четвёртую ступень развития автоматизации тех. процессов. Предназначены для автоматизации тех. процессов со сменным объектом производства, в том числе для единичного и мелкосерийного производства.

Гибкое производство – сложное понятие, включающее в себя целый комплекс компонентов +машинная гибкость – лёгкость перестройки технологических элементов ГАП для производства заданного множества типов деталей.

Гибкость процесса – способность производить заданное множество типов деталей, в том числе из различных деталей, разными способами.

Гибкость по продукту – способность быстрого и экономичного переключения на производство нового продукта.

+ Маршрутная гибкость – способность продолжать обработку заданного множества типов деталей при отказах отдельных технологических элементов ГАП.

Гибкость по объёму – способность ГАП экономически выгодно работать при различных объёмах производства.

Гибкость по расширению – возможность расширения ГАП за счёт введения новых технологических элементов.

Гибкость работы – возможность изменения порядка операции для каждого из типов в детали.

Гибкость по продукции – всё разнообразие изделий, которое способно производить ГАП.

Определяющими явл-ся машинная и маршрутная гибкость. Использование ГАП даёт непосредственный экономический эффект за счёт

высвобождения персонала и увеличения сменности работы и управляющего оборудования.

Обычно в первую смену производится загрузка заготовок, материалов, инструмента, тех заданий, СУ и т.д., это выполняется с участием людей. Вторую и третью смену ГАП работает самостоятельно под наблюдением диспетчера.

Лекция №2

1.3. Технико-экономические особенности автоматизации.

При анализе производства бывает не достаточно знать, на какой стадии механизации или автоматизации находится тот или иной технологический процесс. И тогда степень автоматиз. или механизации (С) определяется уровнем мех.(М) и автом.(А). Оценка уровня М и А осуществляется тремя основными показателями:

- степенью охвата рабочих мех. трудом (С);

- уровнем мех. труда в общих трудозатратах (У Т );

- уровнем мех. и авт. производств. Процессов (У П ). Для мех. обработки и сборки эти показатели:

У Т=

∑ PA k

У П=

∑ РО К П М

∑ РО К П М+ Р(1 −

УТ

Процент возрастания производительности труда за счёт его мех. или автоматизации:

(100 − У Т 2 ) (100− У П 1 ) 100

П М (А )=

− 100

(100 − У Т 1 ) (100− У П 2 )

где - индекс 1 соответствует показателям, полученным до проведения мех. и автом.;

Индекс 2 после их проведения; РА – число рабочих, выполняющих работу с использованием средств автом.;

РО – общее число рабочих на рассматриваемом участке, цехе;

к – коэффициент механизации, выражающий отношение времени мех. труда

к общим затратам времени на данном рабочем времени.

П – коэф. производительности оборудования, характеризующий отношение трудоёмкости изготовления дет. на универсальном оборуд. с наименьшей производительностью, принятым за базу трудоёмкости изготовления этой детали на действующем оборудовании;

М – коэф. Обслуживания, зависящий от количества единиц оборудования, обслуживаемого одним рабочим (при обслуживании оборудования несколькими рабочими М< 1).

Система трёх основных показателей уровня мех. и автом. производственных процессов позволяет:

- оценивать состояние автом. производства, вскрывать резервы для повышения производительности труда;

- сравнивать уровни М. и А. родственных производств и отраслей;

- сравнивать уровни М. и А. соответствующих объектов по периодам внедрения и тем самым определять направления дальнейшего совершенствования производственных процессов;

- планировать уровень автоматизации.

Наряду с выше приведенными показателями может применяться критерий уровня автоматизации производства, количественно характеризующий, в какой мере на данной стадии М. и А. используются возможности экономии затрат труда, т.е. роста произв. труда:

∆ t ЧА

100 =

t ПМ− t ЧА

∆ t ПА

t ПМ− t ПА

где tПМ – трудоёмкость изготовления изделия при полной (комплексной) механизации;

tЧА и tПА – трудоёмкость изготовления при частичной и полной автом.

1.4. Технологичность деталей для автоматизированного производства.

1.4.1. Особенности конструирования изделий в условиях автоматизации про-

изводства.

Конструкция изделия должна обеспечивать его технологичность в изготовлении и сборке. Применение средств автоматизации предусматривает повышенное внимание конструкции изделий с точки зрения облегчения ориентации, позиционирования, сопрягаемости при сборке.

Большинство средств автом. для транспортировки и ориентации деталей действуют на ощупь, т.е. они используют геометрические характеристики деталей для осуществления ориентации и позиционирования.

Учитывая это, можно сказать, что выбор того или иного средства автом. будет основано на анализе классификации объектов производства по геометрическим параметрам (по их назначению и их относительной величине).

Одной из геометрических характеристик явл-ся симметрия.

В некоторых случаях симметрия деталей способствует автоматизации, а в других – делает её невозможной. Пример рис. А1, все детали расположенные справа – симметричны, что делает ориентирование ненужным; рис. А2 – иллюстрирует другую проблему. Если конструктивные особенности каждой детали трудно обнаружить мех. способом, то решение проблемы состоит в нарушении симметрии.

Детали типа цилиндров и дисков явл-ся наиболее вероятными кандидатами на внесение черт ассимметрии, потому что без ориентирующих признаков они могут принимать неопределённое число положений.

Детали прямоугольгой формы обычно выигрывают от симметрии поскольку они могут иметь небольшое число положений.

Рис А1 Ориентация деталей за счётсимметричности.

Рис А2 Ориентация деталей за счётих ассимметричности. а) затруднена б) улучшена

При этом закон распределения суммы этих случайных величин будет иметь Гаусово или нормальное распределение – рис. А5.

Взаимное сцепление деталей (рис. 3)

При загрузке деталей в накопитель или другое устройство навалом, нередко возникает явление сцепления деталей. Типичный пример – пружины . Многие детали имеют отверстия и выступы функционально не связанные друг с другом и не предназначенные для сопряжения. Соотношение размеров этих элементов деталей должно исключать возможность попадания выступа в отверстие и сцепления деталей. (рис. А3).