Радиочастотный спектр является ценным государственным и международным ресурсом. Задачи рационального использования данного ресурса сводятся к обеспечению электромагнитной совместимости (ЭМС) и становятся все более важными при возрастании количества используемых радиоэлектронных средств (РЭС).

Работа группировки РЭС на общей территории может привести к нарушению условий ЭМС, что приведет к взаимных помехам. Помеха может возникнуть в результате побочного излучения, интермодуляционного воздействия, неидеальных параметров приемопередающего оборудования и антенн.

Комплексное исследование специалистами ОАО "Гипросвязь" позволит заранее выявить потенциально помеховые ситуации и предоставить возможные пути по их решению. Исследования проводятся в рамках теоретических и практических исследований.

Для решения задачи ЭМС в ОАО "Гипросвязь" применяется специализированное ПО, цифровые карты местности и измерительное оборудование.

ЭМС РЭС, расположенных на одном объекте

При размещении на одном объекте множества приемо-передающих антенн радиоэлектронных средств (РЭС) становится актуальной задача исследования условий электромагнитной совместимости.

Примером плотного размещения антенн служат мачты, крыши высотных зданий и прочие высотные объекты, на которых одновременно устанавливаются антенны РЭС различного назначения и работающих в различных полосах радиочастотного спектра: системы сотовой подвижной радиосвязи стандартов GSM, UMTS, cdma2000 и LTE, системы широкополосного беспроводного доступа WiMAX (802.16 d/e), Wi-Fi и Canopy, радиовещательные передатчики (аналоговые и цифровые), радиорелейные станции, РЭС специального назначения и другие РЭС.

Причины возникновения помех:

  • недостаточное ослабление внеполосного и побочного излучения передатчиков РЭС;
  • недостаточная избирательность приемников РЭС;
  • недостаточная линейность амплитудных характеристик передающих и приемных трактов РЭС;
  • образование интермодуляционных продуктов на нелинейных участках амплитудных характеристик передающих и приемных тактах при взаимодействии множества различных сигналов;
  • возникновение электромагнитной связи между элементами антенн РЭС в рабочих полосах радиочастот вследствие особенностей их конструкций и материалов;
  • блокирование приемного тракта РЭС при выполнении вышеперечисленных условий и наличии мощного передатчика.

Возникающие взаимные помехи могут ухудшить параметры качества функционирования РЭС или даже заблокировать приемные тракты.

Заказчикам мы предлагаем комплексные исследования условий выполнения ЭМС РЭС, расположенных на одном объекте, включающие теоретические расчеты и натурные измерения.

Теоретические исследования базируются на вычислительных методах электродинамики, теории антенн и распространения радиоволн, теории цифровой радиосвязи, теории радиопередающих и радиоприемных устройств.

Используя информацию о типе и конструкции антенн, архитектуре мачты (крыши) и ближайших металлических конструкциях на основе вычислительных методов электродинамики мы выполняем моделирование электродинамических параметров, характеризующих электромагнитную связь между элементами антенн различных РЭС, их диаграммы направленности и коэффициенты усиления. Далее, используя эти данные, выполняем расчет суммарной мощности от всех передающих РЭС, находящихся в пределах объекта, на входе каждого приемника.

При необходимости теоретические исследования могут быть дополнены практическими измерениями с использованием современных векторных генераторов и анализаторов спектра. На основании результатов теоретических и практических исследований заказчику передается заключение о выполнении/нарушении критериев помехозащищенности приемных трактов РЭС и рекомендации по устранению помеховых ситуаций.

Применяемые нами методы исследования условий ЭМС РЭС, расположенных на одном объекте в непосредственной близости, позволяют выявить потенциально опасные помеховые ситуации и определить возможные пути их устранения.

ЭМС группировки РЭС

Вследствие постоянного увеличения числа новых РЭС гражданского и специального назначения обеспечение условий ЭМС РЭС становится актуальной и важной практической задачей.

На этапе строительства новых фиксированных и подвижных сетей радиосвязи, а также внедрения новых РЭС, дополнительно к уже имеющейся группировке, специалисты ОАО «Гипросвязь» выполняют проектные работы по обеспечению условий электромагнитной совместимости.

Учитывая, что радиочастотный спектр является ценным государственным и международным ресурсом, для определения направлений государственной политики в области развития отрасли связи специалистами ОАО «Гипросвязь» выполняются научно-исследовательские работы по анализу загруженности радиочастотного спектра, а также условиям внедрения новых технологий радиосвязи.

Для решения задач ЭМС в ОАО «Гипросвязь» применяется специализированное программное обеспечение, цифровые карты местности и измерительное оборудование. Программное обеспечение позволяет рассчитывать ЭМС на основе основных технических параметров РЭС с использованием цифровых карт местности на основе разработанных методик и Рекомендаций МСЭ-R:

  • зоны обслуживания и помех для группировки РЭС;
  • групповое помеховое воздействие на РЭС;
  • дуэльные помеховые ситуации по всем возможным каналам проникновения помех.

Пример анализа ЭМС в дуэльной ситуации

Пример расчета зоны помех от группировки РЭС

По результатам расчетов разрабатывается перечень мер для устранения помехового воздействия.

При работе с устаревшими радиоэлектронными средствами специального назначения часто приходится сталкиватся с отсутствием информации о технических характеристиках РЭС, необходимых для расчетов ЭМС.

В случаях, когда критерии помехозащищенности теоретически определить не представляется возможным, используется специализированный аппаратно-программный комплекс (АПК). АПК позволяет генерировать и измерять радиосигналы систем радиосвязи стандартов: GSM, UMTS, LTE, cdma 2000, Wi-Fi, WiMax, APCO, DECT, ZigBee, Bluetooth, подать помеху на вход РЭС-рецептора помехи и получить экспериментальным путем критерии помехозащищенности. Кроме того, наш АПК также позволяет генерировать сигналы РЭС специального назначения: радиолокаторов, пеленгаторов, высотомеров. Ключевой особенностью АПК является возможность одновременной генерации множества сигналов различных технологий.

Заказчикам мы выполняем следующие виды работ:

  • решение задач электромагнитной совместимости радиоэлектронных средств различного назначения;
  • частотно-территориальное планирование сетей фиксированной и подвижной радиосвязи;
  • решение задач электромагнитной совместимости РЭС, находящихся на одном объекте;
  • электромагнитная совместимость спутниковых сетей связи;
  • аналитические работы по использования частотного ресурса в мире и Республике Беларусь.

ЭМС спутниковых сетей связи

В настоящее время в Республике Беларусь ведется активная разработка проекта по реализации национальных спутниковых сетей связи и вещания на геостационарной орбите, что позволит Республике Беларусь представлять телекоммуникационные услуги на новом уровне. Это обеспечит населению информационную независимость, современную связь как на территории Республики Беларусь, так и за ее пределами, предоставление физическим и юридическим лицам широкого спектра услуг (цифровое спутниковое вещание, передача данных и т.п.), а также получение экономической выгоды от сдачи в аренду ресурса спутника.

В начале 2011 года был инициирован вопрос о привлечении инвестиций для создания национальной системы спутниковой связи и вещания. Один из самых важных вопросов создания национальной системы спутниковой связи и вещания является вопрос загруженности и использования орбитально-частотного ресурса (ОЧР), его защиты на международном уровне.

В ОАО «Гипросвязь» специалистами проводилось исследование возможности использования ОЧР в национальных интересах.

Проведены исследования ОЧР в позициях 37.8° в.д., 51.5°в.д. и 64.4° в.д. как наиболее актуальных для реализации национальной системы спутниковой связи и вещания. Рассматриваются перспективные направления по расширению ОЧР в указанных позициях, идут работы по координации заявленного ОЧР.

Для обеспечения международно-правовой защиты ОЧР Республики Беларусь в ОАО «Гипросвязь» проводится обработка Международных циркуляров BR IFIC на предмет необходимости координации новых геостационарных спутниковых сетей с уже заявленными сетями Администрацией связи Республики Беларусь.

Бурное развитие современных систем связи, радиолокации, радионавигации, радиоуправления и т. п. приводит к росту числа радиоэлектронных средств (РЭС) и электромагнитных излучений в окружающем нас пространстве. В результате работа этих средств происходит в условиях непреднамеренных электромагнитных помех, которые средства создают друг другу. Одна из главных задач, которую приходится решать, организуя совместную работу РЭС, состоит в том, чтобы в этих условиях обеспечить требуемое качество функционирования каждого РЭС. Если эта задача решена, то говорят, что обеспечена электромагнитная совместимость (ЭМС) РЭС.

Электромагнитная совместимость радиоэлектронных средств – это способность радиоэлектронных средств одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных помех и не создавать недопустимых радиопомех другим радиоэлектронным средствам. При этом непреднамеренной считают любую радиопомеху, создаваемую источником искусственного происхождения, не предназначенную для нарушения функционирования радиоэлектронных средств.

Изначально проблема ЭМС формировалась как проблема обеспечения совместной работы радиоэлектронных средств, в состав которых входили радиопередающие и радиоприемные устройства. Но по мере развития радиотехники и радиоэлектроники стало ясно, что проблема не может быть ограничена только радиоэлектронными средствами указанного вида. Любые устройства, содержащие радиоэлектронные схемы, могут быть как источниками электромагнитных помех для других подобных устройств, так и испытывать мешающее воздействие с их стороны. Появилось такое понятие как техническое средство , и проблема ЭМС стала проблемой ЭМС технических средств. В области ЭМС понятие «техническое средство» имеет свое специфическое определение.

Техническое средство (ТС) – это изделие, оборудование, аппаратура или их составные части, функционирование которых основано на законах электротехники, радиотехники и (или) электроники, содержащие электронные компоненты и (или) схемы, которые выполняют одну или несколько следующих функций: усиление, генерирование, преобразование, переключение и запоминание.

Техническое средство может быть радиоэлектронным средством (РЭС), средством вычислительной техники (СВТ), средством электронной автоматики (СЭА), электротехническим средством, а , научного и медицинского назначения (ПНМ установки).

Электромагнитная совместимость технических средств – способность технического средства функционировать с заданным качеством в заданной электромагнитной обстановке и не создавать недопустимых электромагнитных помех другим техническим средствам.

Оценка ЭМС базируется на оценке качества работы технического средства. Технические средства разных видов различаются по принципам своей работы и своим рабочим характеристикам, и, следовательно, оценка влияния внешних электромагнитных помех может выполняться по-разному для разных видов ТС. В дальнейшем ограничимся рассмотрением РЭС, в состав которых входят радиопередающие и радиоприемные устройства. Основное внимание будет уделено оценке ЭМС систем телекоммуникации.

Условия, в которых работают РЭС, часто называют электромагнитной обстановкой. В общем случае под электромагнитной обстановкой (ЭМО) понимают совокупность электромагнитных явлений, процессов в заданной области пространства, частотном и временном диапазонах. Для телекоммуникационных систем ЭМО определяется как пространственное распределение электромагнитных полей в местах, где размещаются антенны этих систем. Числовой характеристикой ЭМО обычно является значение напряженности электромагнитного поля (выражается в вольтах на метр [В/м]) или плотности потока мощности (ватт на метр квадратный [Вт/м 2 ]).

Однако качество работы РЭС, в состав которого входит радиоприемное устройство, зависит не только от электромагнитной обстановки. Оно определяется также помехоустойчивостью и/или помехозащищенностью РЭС. Понятия помехоустойчивости и помехозащищенности распространяются на помехи, которые могут поступать в радиоаппаратуру самыми разными путями (например, через антенну приемника или по цепям питания). Иногда эти понятия рассматривают как синонимы, хотя это не так.

Помехоустойчивость РЭС – способность РЭС сохранять заданное качество функционирования при воздействии на него внешних помех с регламентируемыми значениями параметров в отсутствие дополнительных средств защиты от помех, не относящихся к принципу действия или построения РЭС.

Помехозащищенность РЭС – способность ослаблять действие электромагнитной помехи за счет дополнительных средств защиты от помех, не относящихся к принципу действия или построения РЭС.

Высокая степень помехоустойчивости РЭС не гарантирует автоматического обеспечения ЭМС, но значительно облегчает возможность организации совместной работы. Что касается средств помехозащиты, то по отношению к ним следует проявлять определенную осторожность. Устройство подавления помех обычно ориентировано на подавление помех определенного вида. Если оно применяется в сложной ЭМО, где присутствуют мешающие сигналы, для подавления которых используемое устройство не предназначено, то его применение может не дать ожидаемого эффекта и даже привести к росту помех. Например, при приеме узкополосных сигналов для подавления импульсных помех во входных цепях приемников используют нелинейные устройства (диодные ограничители) с последующей узкополосной фильтрацией. Если наряду с импульсными помехами на входе приемника присутствуют непрерывные мешающие сигналы, то наличие нелинейных элементов может привести к появлению новых мешающих частот , попадающих в полосу пропускания приемника и снижающих качество приема полезного сигнала. Обычно схемы подавления помех такого типа можно отключить и включать только по мере необходимости.

    1. Причины появления проблемы ЭМС

Можно указать несколько факторов, которые приводят к появлению проблемы ЭМС РЭС.

1. Основной причиной, порождающей проблему электромагнитной совместимости радиоэлектронных средств, является ограниченность освоенного радиочастотного спектра при непрерывном росте числа его потребителей.

Если рассмотреть, например, диапазон высоких частот (3…30 МГц), то он занимает полосу 27 МГц. При ширине канала 3 кГц (например, при однополосной амплитудной модуляции) в нем можно разместить 9000 каналов. Число желающих пользоваться этим диапазоном (и действительно работающих в нем) неизмеримо больше числа каналов, которые можно в нем выделить, и превышает миллион пользователей. Это означает, что многие РЭС в этом диапазоне частот работают на одинаковых частотах. Такая возможность существует, если между средствами, работающими на одной и той же частоте, уровень помех не приводит к недопустимому снижению качества работы РЭС.

Возможность многократного использования радиочастот зависит от условий распространения радиоволн в том или ином диапазоне частот, технических характеристик приемо-передающих и антенных устройств, используемых типов сигналов и видов модуляции и т. д. С большим успехом многократное использование той же самой частоты применяется в сотовой подвижной связи. Однако не всегда разнесение РЭС по расстоянию может быть использовано для обеспечения ЭМС и повышения эффективности использования радиочастотного спектра. Особо остро проблема ЭМС встает при размещении радиосредств различного назначения на ограниченных площадях (морские порты, аэродромы и т. п.) и объектах, как подвижных (корабль, самолет и т. п.), так и стационарных (приемо-передающие центры, мачты для размещения приемных и передающих антенн и т. п.).

Радиоэлектронные системы кораблей, особенно военных, несут серьезные потери в своих рабочих характеристиках из-за электромагнитных помех, не учтенных при проектировании корабля и размещении на нем радиооборудования. Проблема ЭМС на боевых кораблях обостряется дополнительно ввиду наложения нескольких факторов, а именно :

– более высокая насыщенность радиоэлектронным оборудованием, чем раньше, при меньшей гибкости в его размещении из-за наличия антенных фазированных решеток;

– рост мощности передатчиков. Увеличение уровня мощности связных передатчиков приводит к увеличению дальности связи. Однако это единственный положительный фактор такого подхода. Все остальные эффекты, связанные с ростом мощности передатчиков, являются отрицательными;

– повышение чувствительности систем к электромагнитным полям, особенно систем, использующих твердотельные приборы;

– переход в контурах управления от механических систем к электрическим и электромагнитным с применением твердотельных приборов;

– ужесточение норм на уровни излучений, облучающих обслуживающий персонал.

Последнее обстоятельство расширяет область опасных излучений и накладывает дальнейшие ограничения на размещение оборудования на верхней палубе и надстройках.

Хотя число электронных систем , устанавливаемых на современных боевых кораблях, растет, пространство, пригодное для их размещения, разве что уменьшается. Менее половины имеющихся надстроек могут быть использованы для установки антенн. Из-за необходимости обеспечить свободную траекторию стрельбы для различных систем оружия эти антенны в основном концентрируются в середине корабля на грот и фок-мачтах. Ограниченность пространства для монтажа антенн приводит к тому, что передающая и приемная антенны систем, работающих в диапазоне средних частот (СЧ), и систем, работающих в диапазоне высоких частот (ВЧ), размещаются на расстояниях менее 30 м друг от друга, а для систем сверхвысоких частот (СВЧ) расстояние составляет менее 10 м. При этом расстояние между антеннами систем, работающими в разных диапазонах частот (например, антенной системы связи, работающей в диапазоне ВЧ, и антенной РЛС диапазона СВЧ) часто составляет менее 3 м. Большое количество РЭС и скученность антенн приводят к значительным взаимным помехам между корабельными РЭС. Нет ничего необычного в том, что на входе корабельного радиоприемника могут появиться высокочастотные напряжения, значения которых составляют десятки вольт.

Аналогичные трудности возникают и в авиации, о чем можно судить по количеству средств и антенн, размещаемых на самолетах, особенно военных. Так, по сообщениям американской печати , на самолете-разведчике W-2V размещается 21 радиостанция при 38 антеннах, для бомбардировщика B-52 эти цифры составляют соответственно 16 и 29, а для истребителя F-4 они равны 8 и 12.

Вышки, на которых размещаются антенны телевизионного вещания, ретрансляторов или базовых станций подвижной сотовой связи, широко используются для размещения других систем телекоммуникации, что также требует решения задач обеспечения ЭМС.

Ввиду ограниченности частотного ресурса, выделяемого для средств, работающих на объектах, и ограниченных возможностях пространственного разнесения антенн РЭС, решение проблемы обеспечения ЭМС РЭС на объектах является особенно трудным.

2. Наличие у радиоэлектронных средств параметров ЭМС.

Параметры, характеризующие радиоэлектронное средство, можно разбить на две группы. К первой группе относятся параметры, определяющие функциональное назначение РЭС , ко второй – параметры ЭМС. Параметрами, определяющими функциональное назначение РЭС, являются параметры, изменение которых влияет на качество передачи и/или приема информации в радиоканале при отсутствии непреднамеренных помех. Эти параметры определяют энергетические потенциалы радиопередающих устройств на выделенных им для работы радиоканалах, а также способность радиоприемных устройств качественно принимать полезный сигнал при отсутствии непреднамеренных помех за пределами отведенного для работы РЭС частотного канала. Параметрами ЭМС являются параметры, значение которых влияет на качество совместной работы совокупности радиоэлектронных средств при наличии непреднамеренных помех за пределами радиоканала, отведенного для работы РЭС.

Например, функциональными параметрами радиопередатчика являются мощность излучения передатчика на присвоенной ему частоте, ширина полосы частот основного излучения передатчика и др., а параметрами ЭМС – уровни излучений на гармониках, уровни шумовых излучений и др. Излучения на гармониках или шумовые излучения передатчика находятся за пределами радиоканала, который отведен для работы радиопередатчика. Однако, попадая в основной канал приема РЭС, содержащих радиоприемные устройства, которые работают на соответствующих частотах, эти излучении могут снизить качество приема полезных сигналов. Для радиоприемного устройства (РПУ) параметрами, определяющими качество его работы в соответствии с функциональным назначением, являются чувствительность, избирательность, динамический диапазон по основному каналу приема и др., в то время как параметрами ЭМС выступают такие параметры, как восприимчивость РПУ по побочным каналам приема (ПКП), динамические диапазоны по нелинейным эффектам и др., определяющие качество работы РПУ при наличии непреднамеренных помех от других РЭС, излучения которых лежат за пределами полосы пропускания приемника. Для антенных систем функциональными параметрами являются, например, ширина главного лепестка диаграммы направленности антенны в горизонтальной и вертикальной плоскостях и коэффициент усиления антенны, а параметрами ЭМС – уровни боковых и задних лепестков относительно главного.

Параметры ЭМС радиоприемных и радиопередающих устройств нормируют. Нормативные требования к параметрам ЭМС РЭС устанавливают, исходя из технических и конструкторско-технологических возможностей получить желаемые значения параметров, что определяется развитием радиотехники и электроники на момент разработки норм, а также исходя из предполагаемых условий эксплуатации оборудования , для которого нормируются параметры ЭМС. Нормы, с одной стороны, устанавливают требования к параметрам мешающих излучений, а с другой стороны,  требования к минимальной помехоустойчивости РЭС в заданных условиях эксплуатации. В связи с этим нормативные требования к параметрам ЭМС для гражданской и военной радиоаппаратуры могут существенно различаться. Выполнение норм, установленных на параметры ЭМС, облегчает решение проблемы обеспечения ЭМС, но не устраняет саму проблему.

3. Влияние окружения на уровни и спектральный состав непреднамеренных помех.

Отражения от окружающих объектов увеличивают или уменьшают уровень помехи. Нелинейности окружения изменяют спектральный состав помех.

4. Наличие внешнего фона.

Существенный вклад в формирование электромагнитной обстановки вносят излучения со стороны различного рода энергетических и промышленных установок, которые не предназначены для излучения электромагнитной энергии, но в силу специфики своей работы являются источниками непреднамеренных помех. Это так называемые индустриальные помехи. Наличие индустриальных помех часто не позволяет полностью реализовать потенциальные возможности радиоаппаратуры, в частности чувствительность РПУ, и усложняет совместную работу РЭС. Влияние индустриальных помех особенно заметно в крупных промышленных городах, на больших промышленных предприятиях и на подвижных объектах, имеющих крупное энергетическое оборудование и радиоэлектронные системы, таких, как самолеты и корабли.

Таким образом предлагаемые решения проблемы ЭМС РЭС в общем случае должны учитывать следующие факторы: ограничения на возможный частотно-территориальный разнос РЭС, наличие у радиоэлектронных средств параметров ЭМС, влияние окружающих объектов на электромагнитную обстановку в месте работы РЭС, наличие индустриальных помех и помех естественного происхождения. Отсутствие ЭМС означает либо некачественную работу РЭС, либо то, что данное РЭС в данной ЭМО работать не может вообще.

    1. Последствия отсутствия ЭМС и особенности изучения
      проблемы ЭМС РЭС

Проблемы, создаваемые радиопомехами, могут иметь весьма широкий диапазон – от легкого раздражения пользователя до значительных экономических потерь, а в определенных ситуациях отсутствие ЭМС может привести к человеческим жертвам. Например, определенное раздражение может вызывать восприятие звуковой информации или изображения на телевизионном экране в присутствии помех. Непреднамеренная помеха навигационной системе летательного аппарата может привести к самым печальным последствиям.

В литературе можно найти примеры, когда под действием радиопомехи любительского диапазона частот сенсорное устройство привело в действие систему пожаротушения промышленного предприятия, или излучение РЛС от судна доставки, ежедневно в определенное время проплывавшее мимо завода, воздействовало на аналоговые приборы , связанные с системой аварийного отключения завода, вызывая его остановку . В этих случаях следствием были экономические потери предприятий.

Важную роль проблема ЭМС играет в военной технике. Катастрофы самолетов военно-морских сил США и НАТО, вызванные непреднамеренными помехами во время военных учений, потери беспилотных целей, пожары в отсеках кораблей и другие подобные происшествия в мирное время, связанные с отсутствием ЭМС, служат подтверждением актуальности этой проблемы .

Особенно тяжелые последствия отсутствия ЭМС могут иметь место в военные периоды. В 1967г. во время войны США во Вьетнаме электромагнитная помеха вызвала срабатывание пускового устройства ракеты одного из самолетов, находившихся на верхней палубе американского авианосца «Форрестол». Причина – неправильно смонтированный экранированный разъем и недостаточная помехозащищенность пускового устройства. Источник помехи – излучение РЛС кругового обзора. Поскольку на верхней палубе авианосца находились другие самолеты, груженные бомбами и ракетами и заправленные горючим для боевого вылета, попадание ракеты в один из них привело к катастрофе – взрывам и пожару, который распространился на нижние палубы корабля. Погибли 134 человека, было потеряно 32 самолета, не считая других материальных потерь, связанных с повреждением авианосца .

Трагически завершилась судьба английского фрегата «Шеффилд» во время войны между Англией и Аргентиной за Фолклендские острова в начале 80-х годов прошлого века. Отсутствие ЭМС между РЛС кругового обзора и спутниковой системой связи корабля вынуждало командира корабля отключать РЛС кругового обзора во время связи с Лондоном. Атака аргентинских ВВС во время сеанса связи привела к тому, что вовремя не была обнаружена ракета типа воздух-вода, запущенная в сторону фрегата. В результате попадания ракеты в корабль имелись человеческие жертвы, а сам фрегат затонул. В тоже время атакованный одновременно с «Шеффилдом» другой английский фрегат «Плимут» избежал подобной участи. На корабле работала РЛС кругового обзора, что позволило вовремя обнаружить запущенную в его сторону ракету. С корабля было выброшено облако пассивных отражателей, на которое сработала головка самонаведения ракеты, и ракета прошла мимо цели .

Подобные примеры можно продолжить, но и приведенных достаточно, чтобы понять важность рассматриваемой проблемы.

Отметим особенности изучения проблемы ЭМС РЭС:

1. Рассматриваются только непреднамеренные помехи. Специально организованные помехи являются областью, которой занимается направление, именуемое радиоэлектронной борьбой.

2. Неограниченный уровень помех. Эта особенность проблемы приводит к тому , что приемные устройства, которые для полезного сигнала обычно рассматриваются как линейные, при действии помех могут таковыми уже не быть. И, следовательно, при анализе ЭМС РЭС, в аппаратуре должны рассматриваться возможные нелинейные эффекты.

3. Каждое РЭС рассматривается как возможный источник и рецептор помехи. Эта особенность вытекает из определения ЭМС РЭС, согласно которому каждое РЭС должно работать с требуемым качеством в условиях непреднамеренных помех и не создавать недопустимых помех другим РЭС.

4. Доступность для управления некоторых параметров источников и рецепторов помех. С целью обеспечения ЭМС РЭС на этапе разработки, например, частотно-территориальных планов систем телекоммуникации имеется возможность в некоторых пределах варьировать положение РЭС и их рабочие частоты. В некоторых случаях возможно изменение технических параметров РЭС, например мощности, излучаемой передатчиком.


Министерство транспорта Российской федерации (Минтранс России)

Федеральное агентство воздушного транспорта (Росавиация)

Федеральное Государственное бюджетное образовательное

учреждение профессионального высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДНСКОЙ АВИАЦИИ

Кафедра №12

КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ «ЭЛЕКТОМАГНИТНАЯ СОВМЕСТИМОСТЬ РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ»

Выполнил студент группы 803

Казаков Д.С.

Номер зачетной книжки 80042

Санкт-Петербург

Исходные данные для расчета

Исходные данные для расчета выбираются согласно трем последним цифрам номера зачетной книжки:

Частота основного излучения: f0Т = 220 [МГц];

Частота основного канала приема: f0R =126 [МГц];

Мощность излучения на частоте: PT(f0Т) = 10 [Вт];

Коэффициент усиления передающей антенны в направлении к приемной: GTR = 10 [дБ];

Коэффициент усиления приемной антенны в направлении к передающей: GRT =7 [дБ];

Расстояние между антеннами: d = 1,2 [км];

Восприимчивость приемника по частоте: PR(f0R) = -113 [дБм];

Скорость передачи данных: ns = 2,4 [кБит/с];

Индекс частотной модуляции: mf = 1,5.

В данной работе используются эксплуатационно-технические характеристики приемного тракта радиостанции авиационной воздушной связи Баклан-20:

Промежуточная частота РП: fIF = 20 [МГц];

Полоса пропускания по ПЧ: ВR = 16 [кГц];

Частота гетеродина РП: fL0 = 106 [МГц].

Порядок анализа ЭМС пары ИП-РП

1. Частота основного излучения ИП: f0Т = 220 [МГц].

2. Минимальная частота побочного излучения ИП: fSTmin = 22 [МГц].

3. Максимальная частота побочного излучения ИП: fSTmax = 2200 [МГц].

4. Частота основного канала приема РП: f0R =126 [МГц].

5. Минимальная частота побочного канала приема РП: fSRmin =12,6 [МГц].

6. Максимальная частота побочного канала приема РП: fSRmax=1260 [МГц].

7. Необходимый разнос между рабочими частотами ИП и РП:

0,2 f0R =25,2 [МГц].

ОО |220-126|<25,2 - не выполняется;

ОП 220 < 1260 - выполняется, 220> 12,6 - выполняется;

ПО 22 < 126 - выполняется, 2200 > 126 - выполняется;

ПП 22 < 1260 - выполняется, 2200 > 12,6 - выполняется.

По результатам сравнения частот излучения ИП и отклика РП делаем заключение: так как неравенство ОО не выполняется, то из данных комбинаций необходимо рассматривать ОП, ПО, ПП. Комбинация ОО исключается из анализа.

Последующий анализ ЭМС основывается на суммировании данных (в децибелах) согласно выражению:

IM(f,t,d,p) = PT (fT)+GT (fT,t,p)-L(fT,t,d,p)+GR(fR)-PR (fR)+CF(BT,BR,?f).

Амплитудная оценка помех

8. Выходная мощность ИП на частоте основного излучения:

PT(fOT) = 101g(PT (fОТ)/ PO) = 101g(10/10-3)=40 [дБм].

9. Выходная мощность ИП на частоте побочного излучения:

PT(fST) = PT(fОТ) - 60 = 37 - 60 = - 20 [дБм].

10. Усиление антенны ИП в направлении РП: GTR (f) =10 [дБ] .

11. Усиление антенны ИП в направлении ИП: GRT (f) =7 [дБ].

12. Потери при распространении радиоволн длиной л в свободном пространстве на расстоянии d согласно выражению:

L[дБ] = 201g(л / 4рd) = 20lg(c/4рfd).

· ОП: fSRmin=12,6 [МГц];

· ПО: fSTmin=22 [МГц];

· ПП: fSRmin=12,6 [МГц].

LОП[дБ] = 20lg(3*108 / 4*3,14*12,6*106*1200) = -56[дБ];

LПО[дБ] = 20lg(3*108 / 4*3,14*22*106*1200) = -60,9 [дБ];

LПП[дБ]= 20lg(3*108 / 4*3,14*12,6*106*1200) = -56 [дБ].

частота помеха усиление антенна

13. Мощность помехи на входе РП РA(f) дБм определяется по сумме данных в строках 8...12:

ОП: РA(f) = PT(fOT) + GTR (f) + GRT (f) + LОП = 1 [дБм];

ПО: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПО = -63,9[дБм];

ПП: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПП = -59[дБм].

14. Восприимчивость РП на частоте основного канала приема:

PR(f0R)= -113[дБм].

15. Восприимчивость РП на частоте побочного канала приема:

PR(fSR)= PR(f)+ 80 = -113+80=-33 [дБм].

16.Предварительная оценка уровня ЭМП в дБ, определяемая по разности данных в строках 13 и 14 или 13 и 15:

· ОП: 1+33=34[дБм];

· ПО: -63,9+113=49,1[дБм];

· ПП: -59+33=-26[дБм].

По результатам полученных данных в делаем заключение о необходимости перейти к ЧОП - частотной оценке помех, т.к. ОО, ОП и ПО > -10 дБ.

Частотная оценка помех

I. Коррекция результатов АОП, учитывающая различие полос частот ИП и РП

17. Частота следования импульсов на выходе ИП при импульсном излучении: fc=ns/2

fc=2,4/2= 1,2 [кГц].

18. Ширина полосы частот ИП: ВT =2F(1+ mf), т.к. mf > 1

ВT =2*1,2(1+1,5)=6 [кГц].

19.Ширина полосы частот РП: ВR = 16 [кГц].

20. Поправочный коэффициент:

т.к. соотношение полос частот ИП и РП - ВR >ВT , следовательно, нет необходимости в коррекции.

II. Коррекция результатов АОП, учитывающая разнос частот ИП и РП

22.Частота гетеродина РП: fL0 = 106 [МГц].

23.Промежуточная частота РП: fIF = 20 [МГц].

24. Т.к. комбинация ОО отсутствует, то пункт 24 и 25 пропускаем.

26.Определяем величину отношения:

f0T /(fL0+ fIF) = 220/(106+20)=1,74 (ближайшее целое число 2).

27. Результат перемножения данных строк 22 и 26:

106* 2 = 212 [МГц].

28. Определяем разнос частот в комбинации ОП по данным строк 1, 23, 27:

|(l)± (23) -(27)| = |220± 20-212| = 12 [МГц].

29. Поправку CF дБ в комбинации ОП, определяем согласно 28 строки и рис. 6.1 учебного пособия:

CF=40lg((BT+BR)/2?f)= 40lg((6*103+16*103)/2*12*106)=-121,5[дБ].

30. Определяем величину отношения f0R/f0T:

fОR/fOT =116/220 = 0,51; выбираем f0R/f0T =1 как ближайшее целое число.

31. Результат перемножения данных строк 1и 30: 220*1 = 220 [МГц].

32. Определяем разнос частот в комбинации ПО по данным строк 4 и 31: ?f=220-116=94 [МГц].

33. Определяем поправку CF дБ в комбинации ПО, согласно данным предыдущего пункта и рис 6.1:

CF=40lg((BT+BR)/2?f) = 40lg((6*103+16*103)/2*94*106) = -157,3[дБ].

34. Т.к. комбинация ПП отсутствует, то пункт 34 и 35 пропускаем.

36. Итоговый результат IM дБ, получаемый суммированием данных в строках:

21 и 25 для ОО,

21 и 29 для ОП,

21и 33 для ПО,

21 и 35 для ПП.

Если для какой-то комбинации IM ?-10 дБ, то можно считать, что она отсутствует.

· ОП: 34 -138,6 = -87,6[дБм];

· ПО: 49,1-157,3=-108,2[дБм];

Для комбинаций ОО, ОП, ПО IM ? -10дБ, т.е. помеха при данном разносе частот отсутствует, следовательно, ДОП не нужна.

Таблица 1

№ строки

Комбинация

ЧОП 1 коррекция

ЧОП 2 коррекция

Используемая литература

1. Фролов В.И. Электромагнитная совместимость радиоэлектронного оборудования: Учебное пособие/Академия ГА, Санкт-Петербург,2004.

Подобные документы

    Актуальность проблемы электромагнитной совместимости (ЭМС) радиоэлектронных систем. Основные виды электромагнитных помех. Материалы, обеспечивающие токопроводящий монтаж. Применение радиопоглощающих материалов. Методы и оборудование для проверки ЭМС.

    дипломная работа , добавлен 08.02.2017

    Расчет полосы пропускании общего радиотракта приемника. Выбор числа преобразований частоты и номиналов промежуточных частот. Структурная схема приемника. Распределение избирательности и усиления по трактам. Определение коэффициента шума приемника.

    курсовая работа , добавлен 13.05.2009

    Расчет параметров помехопостановщика. Мощность передатчика заградительной и прицельной помех, средств создания пассивных помех, параметров уводящих помех. Алгоритм помехозащиты структуры и параметров. Анализ эффективности применения комплекса помех.

    курсовая работа , добавлен 21.03.2011

    Дискретные способы модуляции, основанные на дискретизации непрерывных процессов как по амплитуде, так и по времени. Преимущество цифровых методов записи, воспроизведения и передачи аналоговой информации. Амплитудная модуляция с одной боковой полосой.

    реферат , добавлен 06.03.2016

    График зависимости предельной дальности прямой видимости от высоты цели, при фиксированной высоте установки антенны. Расчет параметров средств создания пассивных помех. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон.

    курсовая работа , добавлен 20.03.2011

    Расчет структурной схемы частотной модуляции приемника. Расчет полосы пропускания линейного тракта, допустимого коэффициента шума. Выбор средств обеспечения избирательности по соседнему и зеркальному каналу. Расчет входной цепи с трансформаторной связью.

    курсовая работа , добавлен 09.03.2012

    Расчет мощности передатчика заградительной и прицельной помех. Расчет параметров средств создания уводящих и помех. Расчет средств помехозащиты. Анализ эффективности применения комплекса помех и средств помехозащиты. Структурная схема постановщика помех.

    курсовая работа , добавлен 05.03.2011

    Пример снижения уровня помех при улучшении заземления. Улучшение экранирования. Установка фильтров на шинах тактовых сигналов. Примеры осциллограмм передаваемых сигналов и эффективность подавления помех. Компоненты для подавления помех в телефонах.

    курсовая работа , добавлен 25.11.2014

    Состав структурной схемы цифрового радиоприемника. Выбор элементной базы. Расчет частотного плана, энергетического плана и динамического диапазона. Выбор цифровой элементной базы приемника. Частота полосы сигналов. Максимальный коэффициент усиления.

    курсовая работа , добавлен 19.12.2013

    Создание модели антенны и оптимизация ее конструкции. Свойства антенны горизонтальной поляризации с учетом свойств поверхности земли в направлении максимального КНД и влияние диаметра проводников симметричного вибратора на рабочую полосу частот.

Министерство транспорта Российской федерации (Минтранс России)

Федеральное агентство воздушного транспорта (Росавиация)

Федеральное Государственное бюджетное образовательное

учреждение профессионального высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДНСКОЙ АВИАЦИИ

Кафедра №12


КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ «ЭЛЕКТОМАГНИТНАЯ СОВМЕСТИМОСТЬ РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ»


Выполнил студент группы 803

Казаков Д.С.

Номер зачетной книжки 80042


Санкт-Петербург


Исходные данные для расчета


Исходные данные для расчета выбираются согласно трем последним цифрам номера зачетной книжки:

Частота основного излучения: f0Т = 220 [МГц];

Частота основного канала приема: f0R =126 [МГц];

Мощность излучения на частоте: PT(f0Т) = 10 [Вт];

Коэффициент усиления передающей антенны в направлении к приемной: GTR = 10 [дБ];

Коэффициент усиления приемной антенны в направлении к передающей: GRT =7 [дБ];

Расстояние между антеннами: d = 1,2 [км];

Восприимчивость приемника по частоте: PR(f0R) = -113 [дБм];

Скорость передачи данных: ns = 2,4 [кБит/с];

Индекс частотной модуляции: mf = 1,5.

В данной работе используются эксплуатационно-технические характеристики приемного тракта радиостанции авиационной воздушной связи Баклан-20:

Промежуточная частота РП: fIF = 20 [МГц];

Полоса пропускания по ПЧ: ВR = 16 [кГц];

Частота гетеродина РП: fL0 = 106 [МГц].


Порядок анализа ЭМС пары ИП-РП


Частота основного излучения ИП: f0Т = 220 [МГц].

Минимальная частота побочного излучения ИП: fSTmin = 22 [МГц].

Максимальная частота побочного излучения ИП: fSTmax = 2200 [МГц].

Частота основного канала приема РП: f0R =126 [МГц].

Минимальная частота побочного канала приема РП: fSRmin =12,6 [МГц].

Максимальная частота побочного канала приема РП: fSRmax=1260 [МГц].

Необходимый разнос между рабочими частотами ИП и РП:

2 f0R =25,2 [МГц].

ОО |220-126|<25,2 - не выполняется;

ОП 220 < 1260 - выполняется, 220> 12,6 - выполняется;

ПО 22 < 126 - выполняется, 2200 > 126 - выполняется;

ПП 22 < 1260 - выполняется, 2200 > 12,6 - выполняется.

По результатам сравнения частот излучения ИП и отклика РП делаем заключение: так как неравенство ОО не выполняется, то из данных комбинаций необходимо рассматривать ОП, ПО, ПП. Комбинация ОО исключается из анализа.

Последующий анализ ЭМС основывается на суммировании данных (в децибелах) согласно выражению:

(f,t,d,p) = PT (fT)+GT (fT,t,p)-L(fT,t,d,p)+GR(fR)-PR (fR)+CF(BT,BR,?f).


Амплитудная оценка помех


Выходная мощность ИП на частоте основного излучения:(fOT) = 101g(PT (fОТ)/ PO) = 101g(10/10-3)=40 [дБм].


Выходная мощность ИП на частоте побочного излучения:

(fST) = PT(fОТ) - 60 = 37 - 60 = - 20 [дБм].


Усиление антенны ИП в направлении РП: GTR (f) =10 [дБ] .

Усиление антенны ИП в направлении ИП: GRT (f) =7 [дБ].

Потери при распространении радиоволн длиной ? в свободном пространстве на расстоянии d согласно выражению:[дБ] = 201g(? / 4?d) = 20lg(c/4?fd).


·ОП: fSRmin=12,6 [МГц];

·ПО: fSTmin=22 [МГц];

·ПП: fSRmin=12,6 [МГц].

ОП[дБ] = 20lg(3*108 / 4*3,14*12,6*106*1200) = -56[дБ];ПО[дБ] = 20lg(3*108 / 4*3,14*22*106*1200) = -60,9 [дБ];ПП[дБ]= 20lg(3*108 / 4*3,14*12,6*106*1200) = -56 [дБ].

частота помеха усиление антенна

13. Мощность помехи на входе РП РA(f) дБм определяется по сумме данных в строках 8...12:


ОП: РA(f) = PT(fOT) + GTR (f) + GRT (f) + LОП = 1 [дБм];

ПО: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПО = -63,9[дБм];

ПП: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПП = -59[дБм].


Восприимчивость РП на частоте основного канала приема:

(f0R)= -113[дБм].

Восприимчивость РП на частоте побочного канала приема:


PR(fSR)= PR(f)+ 80 = -113+80=-33 [дБм].


Предварительная оценка уровня ЭМП в дБ, определяемая по разности данных в строках 13 и 14 или 13 и 15:

·ОП: 1+33=34[дБм];

·ПО: -63,9+113=49,1[дБм];

·ПП: -59+33=-26[дБм].

По результатам полученных данных в делаем заключение о необходимости перейти к ЧОП - частотной оценке помех, т.к. ОО, ОП и ПО > -10 дБ.


Частотная оценка помех

Коррекция результатов АОП, учитывающая различие полос частот ИП и РП

Частота следования импульсов на выходе ИП при импульсном излучении: fc=ns/2

2,4/2= 1,2 [кГц].


Ширина полосы частот ИП: ВT =2F(1+ mf), т.к. mf > 1


ВT =2*1,2(1+1,5)=6 [кГц].


Ширина полосы частот РП: ВR = 16 [кГц].

Поправочный коэффициент:

т.к. соотношение полос частот ИП и РП - ВR >ВT , следовательно, нет необходимости в коррекции.. Коррекция результатов АОП, учитывающая разнос частот ИП и РП

Частота гетеродина РП: fL0 = 106 [МГц].

Промежуточная частота РП: fIF = 20 [МГц].

Т.к. комбинация ОО отсутствует, то пункт 24 и 25 пропускаем.

Определяем величину отношения:

T /(fL0+ fIF) = 220/(106+20)=1,74 (ближайшее целое число 2).


Результат перемножения данных строк 22 и 26:

* 2 = 212 [МГц].

Определяем разнос частот в комбинации ОП по данным строк 1, 23, 27:

|(l)± (23) -(27)| = |220± 20-212| = 12 [МГц].

Поправку CF дБ в комбинации ОП, определяем согласно 28 строки и рис. 6.1 учебного пособия:

40lg((BT+BR)/2?f)= 40lg((6*103+16*103)/2*12*106)=-121,5[дБ].


Определяем величину отношения f0R/f0T:ОR/fOT =116/220 = 0,51; выбираем f0R/f0T =1 как ближайшее целое число.

Результат перемножения данных строк 1и 30: 220*1 = 220 [МГц].

Определяем разнос частот в комбинации ПО по данным строк 4 и 31: ?f=220-116=94 [МГц].

Определяем поправку CF дБ в комбинации ПО, согласно данным предыдущего пункта и рис 6.1:

40lg((BT+BR)/2?f) = 40lg((6*103+16*103)/2*94*106) = -157,3[дБ].


Т.к. комбинация ПП отсутствует, то пункт 34 и 35 пропускаем.

Итоговый результат IM дБ, получаемый суммированием данных в строках:

и 25 для ОО,

и 29 для ОП,

и 33 для ПО,

и 35 для ПП.

Если для какой-то комбинации IM ?-10 дБ, то можно считать, что она отсутствует.

·ОП: 34 -138,6 = -87,6[дБм];

·ПО: 49,1-157,3=-108,2[дБм];

Для комбинаций ОО, ОП, ПО IM ? -10дБ, т.е. помеха при данном разносе частот отсутствует, следовательно, ДОП не нужна.


Таблица 1

№ строкиКомбинацияОООППОППАОП840,09-20,0-20,01010,010,010,0117,07,07,012-56-60,9-56131-63,9-5914-113,015-33,0-33,0163449,1-26ЧОП 1 коррекция20213449,1ЧОП 2 коррекция2529-121,533-157,33536-87,5-108,2Используемая литература


1. Фролов В.И. Электромагнитная совместимость радиоэлектронного оборудования: Учебное пособие/Академия ГА, Санкт-Петербург,2004.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Постоянное увеличение плотности размещения радиоэлектронных средств при ограниченном частотном ресурсе приводят к увеличению уровня взаимных помех, нарушающих нормальную работу этих средств. Плотное размещение РЭС и их антенн приводит к тому, что электромагнитные поля, излучаемые антеннами радиопередатчиков могут создавать в антеннах радиоприемников высокочастотные ЭДС, что может создавать перегрузку входных каскадов и нарушение нормального функционирования радиоприёмников (РПМ) или даже выход их из строя.

При анализе внутриобъектовой электромагнитной совместимости используют следующие виды оценок:

1) Парная. При парной оценке ЭМС осуществляется учет воздействия помех радиопередатчика (РПД) одного РЭС на РПМ другого объекта.

2) Групповая. При групповой оценке – учет помехового воздействия всех РПД на один РПМ объекта

3) Комплексная. При комплексной оценке ЭМС анализируется совместимость каждого из РЭС объекта со всеми остальными РЭС этого объекта.

ЭМС РЭС объекта рассчитывают в следующем порядке:

1) Определение потенциально несовместимых пар РЭС,

2) Расчет энергетических характеристик непреднамеренных радиопомех,

3) Определение степени обеспечения ЭМС.

На основе частотного анализа определяются источники и рецепторы радиопомех. Расчет энергетических характеристик радиопомех предусматривает определение мощности совокупной радиопомехи, приведенной ко входу РПМ, с учетом проникновения радиопомех через антенно-фидерный тракт.

Определение степени обеспечения ЭМС РЭС объекта производят на основе парной или групповой оценки ЭМС.

Порядок проведения парной оценки ЭМС РЭС:

1) Определяют мощность P ij непреднамеренной радиопомехи, приведенную ко входу i-го РПМ, от j-го мешающего РПД;

2) Аналитически определяют допустимую мощность P i доп непреднамеренной радиопомехи на входе i-го РПМ от j-го РПД;

3) Сравнивают уровень мощности радиопомехи , в дБ, на входе РПМ с допустимым и определяют степень обеспечения ЭМС, которая определяется показателем

(1)

Групповая оценка ЭМС РЭС проводится по следующему алгоритму:

1) Определяется суммарная мощность P iΣ радиопомех, приведенных ко входу i-го РПМ, от РПД объекта;

2) Аналитически определяют допустимую мощность P i доп радиопомехи на входе i-го РПМ оцениваемого РЭС;

3) Сравнивают уровень суммарной мощности радиопомех с допустимым уровнем и определяют степень обеспечения ЭМС приемника оцениваемого РЭС с РПД остальных РЭС объекта.

Показатель обеспечения ЭМС РЭС объекта, в дБ, при групповой оценке определяется по формуле

(2)

Значения и в децибелах характеризуют степень запаса обеспечения ЭМС (если она положительна) или степень недостаточности обеспечения ЭМС (если она отрицательна).



Комплексная оценка ЭМС РЭС является наиболее сложной и на практике проводится редко.

Технические параметры РЭС, влияющие на их ЭМС

Основными нормируемыми техническими параметрами, определяющими ЭМС РЭС, являются:

1) Для радиопередающих устройств :

· Мощность несущей РПД;

· Ширина полосы частот основного излучения РПД;

· Отклонение несущей частоты РПД передатчика от номинального значения;

· Уровень внеполосных излучений (ВИ) РПД;

· Уровень побочных излучений (ПИ), в том числе интермодуляционных излучений (ИМИ) РПД;

2) Для радиоприемных устройств:

· Чувствительность РПМ, которая характеризует способность приемника принимать слабые сигналы, т.е. уровень принимаемого сигнала, при котором переданная информация может быть воспроизведена с удовлетворительным качеством;

· Избирательность РПМ по соседнему каналу (СК), по побочному каналу приема (ПКП), интермодуляционная;

· Уровень излучения гетеродинов РПМ, который характеризует возможность излучения помех приемником на частотах гетеродинов и их гармониках.

Помимо нормируемых параметров передатчиков и приемников, на ЭМС РЭС влияют:

· Диаграмма направленности (ДН) при излучении и приеме на рабочих частотах;

· ДН на частотах внеполосных и побочных излучений РПД;

· ДН на частотах соседних и побочных каналов приемника РПМ;

· Временной режим работы РЭС на излучение и прием.

Из-за технологического несовершенства РПД их спектр излучения, помимо основного излучения (ОИ), содержит нежелательные внеполосные и побочные излучения, за пределами необходимой полосы частот.

К побочным излучениям относятся:

· Радиоизлучение на гармонике;

· Радиоизлучение на субгармонике;

· Комбинационное радиоизлучение;

· Интермодуляционное радиоизлучение.

Из-за неидеальности параметров РПМ, помимо основного канала приема, имеют большое число неосновных каналов – соседних и побочных, которые не предназначены для приема полезного сигнала. К побочным каналам приема относятся каналы, включающие промежуточную, зеркальную, комбинационную частоты и гармоники частот настройки РПМ.

Из-за недостаточной избирательности РПМ возможны помеха по соседнему каналу приема, помехи обусловленные эффектом блокирования и эффектом переноса шумов гетеродина в тракт промежуточной частоты приемника. Эффект блокирования проявляется как изменение отношения с/ш на выходе РПМ при действии радиопомехи на его входе, частота которой находится в полосе частот, начиная от частоты соседнего канала до частоты, на которой уровень ослабления помехи соседними контурами РПМ составляет -80дБ. Эффект переноса шумов гетеродина заключается в преобразовании части энергетического спектра шума гетеродина РПМ с шириной, равной полосе пропускания тракта ПЧ РПМ, в промежуточную частоту и попадании шума в тракт ПЧ ПРМ в виде энергии шума.

При воздействии на нелинейные элементы РПМ двух или более радиопомех в нем может возникнуть интермодуляционная помеха, вызывающая возникновение отклика на выходе РПМ, а так же перекрестное искажения – изменение спектра полезного радиосигнала на выходе РПМ при наличии на его входе модулированной радиопомехи.

Признаками прохождения радиопомех через антенну по наблюдаемому эффекту на выходе РПМ являются:

· Полное пропадание помех на выходе при отсоединении антенны от РПМ и подключения вместо нее эквивалента антенны;

· Изменение уровня помех синхронно с изменением направления антенны приемника-рецептора помех при неподвижной антенне источника помех;

· Существенная зависимость уровня помех от типа используемой антенны или места ее расположения на объекте;

· Значительное уменьшение уровня помех при полном или частичном экранировании раскрыва антенны.

Признаками прохождения помех через экран РПМ являются существенное увеличение помех на выходе РПМ при искусственном ухудшении качества его экранировки и наоборот – уменьшение помех при улучшении качества экранировки. Указанные эффекты могут быть достигнуты следующими приемами:

· Частичным или полным извлечением шасси из кожуха при подключении РПМ через удлинительные ремонтные кабели;

· Помещением РПМ в дополнительный экран.

Для определения вида помехи по характеру их мешающего действия следует руководствоваться следующими положениями:

· помехи, вызванные внеполосными излучениями РПД, воспринимаются как возрастание уровня шумов на выходе РПМ;

· помехи, вызванные побочными излучениями РПД и обусловленные наличием побочных каналов приема РПМ, воспринимаются как невнятная (сложно-различимая) модуляция РПД – источника непреднамеренных радиопомех;

· эффект блокирования РПМ проявляется в одновременном уменьшении уровня полезного сигнала и шумов (индустриальных радиопомех) под воздействием помехи. Помеха как бы подавляет (блокирует) полезный сигнал, при этом модуляция радиопередатчика-источника помех на выходе РПМ не прослушивается;

· помехи интермодуляции прослушиваются обычно на выходе РПМ разборчиво как модуляция одного из работающих одновременно РПД-источника радиопомех.