Все физические тела, температура которых больше абсолютного нуля, испускают тепловые лучи.Тепловое излучение – электромагнитное излучение, испускаемое веществомза счет его внутренней энергии .

Интенсивность теплового излучения резко убывает с уменьшением температуры тел. Большинство твердых и жидких тел имеют сплошной спектр излучения, т.е. излучают волны всех длинλ.

Видимое человеком излучение (свет): λ = 0,40-0,75 мкм.

Инфракрасный (невидимый свет): λ = 0,75-400 мкм. Далее радиоволновой диапазон.

Средства измерения, определяющие температуру тел по их тепловому излучению, называютпирометрами излучения . Пирометры используются для измерения температуры в диапазоне 300-6000 о С. Для измерения температур больше 3000 о С пирометры являются практически единственными СИ, т.к. они бесконтактны. Теоретически верхний предел измерения пирометров неограничен. В пирометрах используется в основном видимый свет и инфракрасный диапазон.

Измерение температуры тел по их тепловому излучению основывается на закономерностях, полученных дляабсолютно черного тела . Если на внешнюю поверхность тела падает поток лучистой энергии Ф, то он частично поглощается Фп, отражается Фот и пропускается Фпр. Соотношение между этими потоками зависит от свойств тела и, в частности, от состояния его поверхности (степени шероховатости, цвета, температуры). Если тело поглощает весь падающий на него лучистый поток, токоэффициент поглощения его и такое тело называютабсолютно черным .

Реальные тела не являются абсолютно черными, и лишь некоторые из них по оптическим свойствам близки к ним, например, нефтяная сажа, платиновая чернь, черный бархат в области видимого света имеютα, мало отличающийся от 1.

Внешняя поверхность тел не только поглощает, но и испускает собственное излучение, зависящее от температуры.

В соответствии с законом Кирхгофаизлучательная способность тел пропорциональна их коэффициентам поглощения. Так как коэффициент поглощения абсолютно черного тела α абс.ч.т. =1, то оно обладает максимальной излучательной способностью.

В пирометрии излучения в качестве величин, характеризующих тепловое излучение тел, применяют энергетическую светимость (излучательность) и энергетическую яркость (лучистость). При этом следует различать полную и спектральную светимость и яркость.

Под полнойэнергетической светимостью понимают полную (интегральную)поверхностную плотность излучаемой мощности .

Энергетической яркостью тела в данном направлении называетсямощность излучения в единичный телесный угол с единицы площади проекции поверхности тела на плоскость, перпендикулярную данному направлению. Энергетическая яркость является основной величиной, непосредственно воспринимаемой человеческим глазом, а также всеми пирометрами, основанными на измерении температуры по тепловому излучению.


Все реальные тела по степени поглощения ими лучистой энергии отличаются от черного тела и имеют коэффициент поглощения меньше единицы. Излучательная способность реальных тел также отличается от лучеиспускательной способности черного тела и может быть охарактеризована коэффициентом излучения полнымε и спектральнымε λ .

Реальные тела при одинаковой температуре имеют различную излучательную способность , оценку которой производят по отношению к излучательной способности абсолютно черного тела (значок * относится к абсолютно черному телу)

гдеε λ –коэффициент спектрального излучения (степень черноты монохроматического излучения);

ε– коэффициент полного излучения (степень черноты полного излучения);

Е λ , Е λ * - спектральная энергетическая светимость;

В λ , В λ * - спектральная энергетическая яркость (воспринимается глазом);

Е, Е * - полная энергетическая светимость.

ε λ является функцией длины волныλ и температуры Т. Тело, у которогоε λ не зависит от температуры и λ, называют серым.

Зависимость между спектральной энергетической светимостью абсолютно черного тела Е λ * , его температурой Т и длиной волныλустанавливаетсязаконом Планка (см. рисунок 1.17)

где с 1 , с 2 – константы.

Для выбранной λ с увеличением температуры резко возрастает Е λ * или В λ * , так как

В λ * =k λ ∙ Е λ * . (1.32)

Указанный факт устанавливает возможность измерения температуры тела по его спектральной яркости с высокой чувствительностью.

Из графика (рисунок 1.17) видно, чтоλ max уменьшается с увеличением температуры. По мере уменьшения температуры черного тела максимум распределения энергии его излучения смещается в сторону длинноволновой области спектра.

Рисунок 1.17 – Семейство кривых Е λ * , построенных по закону Планка

Это и явилось основанием использовать для измерения яркостной температуры тел инфракрасную область спектра.

Для реальных тел, имеющих каждый свой ε λ

В λ = ε λ ∙ В λ * . (1.33)

Еслиреальные тела имеют одну и ту же температуру , то из-за разностиε λ измеренныезначения В λ будут различаться , что не позволяет иметь единую шкалу прибора, отградуированную в значениях истинной температуры различных объектов. В связи с этим шкалу пирометра приходится градуировать по излучению абсолютно черного тела.

Так как излучательная способность реальных тел меньше, чем черных, то показания пирометра будут соответствовать не действительной температуре реального тела, а дают условную температуру, в данном случае так называемую яркостную температуру.

Яркостной температурой реального тела называют такую температуру абсолютно черного тела, при которой его спектральная яркость В * (λ , Тя) равна спектральной яркости реального тела В (λ , Т) при его действительной температуре Т.

Используя (1.31), (1.32), (1.33), получим

Видно, что яркостная температура всегда меньше действительной температуры, так как ε λ < 1.

Приборы, предназначенные для измерения яркостной температуры в видимой части спектра, обычно называютоптическими и фотоэлектрическими пирометрами.

Как видно из рисунка 1.17, с повышением температуры максимум кривой распределения энергии излучения по спектру смещается в сторону коротких волн. Длина волныλ max , соответствующая максимуму кривой распределения энергии в спектре излучения черного тела, связана с абсолютной температурой Т соотношением

гдеb – постоянная, равная 2896 мкм К.

Соотношение (1.35) носит название закона смещения Вина. Пунктирная линия (см. рисунок 1.17), проходящая через максимумы всех кривых, соответствует закону смещения Вина.

В видимой части спектра смещениеλ max и, следовательно, перераспределение энергии, вызываемое изменением температуры тела, приводит к изменению его цвета. Это послужило основанием существующиеметоды измерения температур тел , основанные на изменении с температурой распределения энергии внутри данного участка спектра излучения, назватьцветовыми методами . Условная температура тела, измеренная этими методами, называется цветовой температурой.

Наибольшее распространение из существующих получил метод измерения цветовой температуры в видимой части спектра по отношению энергетических яркостей в двух спектральных интервалах.

Цветовой температурой (Тц) называется такая температура абсолютно черного тела, при которой отношение его спектральных энергетических яркостей при длинах волнλ 1 иλ 2 равно отношению спектральных яркостей реального тела при тех же длинах волн и его действительной температуры Т.

Известно, что . Учитывая (1.31), (1.32), (1.33), получим

Практически серыми считают реальные тела: керамика, оксиды металлов, огнеупорные материалы, гранит и др. Преимущества цветового метода для них очевидны, так как яркостная температура всегда, в отличие от цветовой, ниже действительной.

Приборы, предназначенные для измерения цветовой температуры по отношению спектральных энергетических яркостей, принято называтьпирометрами спектрального отношения или цветовыми пирометрами .

20.03.2014

Измерение плотности тепловых потоков, проходящих через ограждающие конструкции. ГОСТ 25380-82

Тепловой поток - количество теплоты, переданное через изотермическую поверхность в единицу времени. Тепловой поток измеряется в ваттах или ккал/ч (1 вт = 0,86 ккал/ч). Тепловой поток, отнесённый к единице изотермической поверхности, называется плотностью теплового потока или тепловой нагрузкой; обозначается обычно q, измеряется в Вт/м 2 или ккал/(м 2 ×ч). Плотность теплового потока - вектор, любая компонента которого численно равна количеству теплоты, передаваемой в единицу времени через единицу площади, перпендикулярной к направлению взятой компоненты.

Измерения плотности тепловых потоков, проходящих через ограждающие конструкции, производятся в соответствии с ГОСТ 25380-82 “Здания и сооружения. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции”.

Данным ГОСТ устанавливается метод измерения плотности теплового потока , проходящего через однослойные и многослойные ограждающие конструкции зданий и сооружений – общественных, жилых, сельскохозяйственных и производственных.

В настоящее время при строительстве, приемке и эксплуатации зданий, а также в жилищно-коммунальной отрасли большое внимание уделяют качеству выполненной постройки и отделки помещений, теплоизоляции жилых зданий, а также экономии энергоресурсов.

Важным оценочным параметром при этом служит расход тепла от изолирующих конструкций. Испытания качества тепловой защиты ограждающих конструкций зданий могут выполняться на разных этапах: в период введения зданий в эксплуатацию, на законченных объектах строительства, во время строительства, в период капитального ремонта сооружений, и в период эксплуатации зданий для составления энергетических паспортов зданий, и по жалобам.

Измерения плотности теплового потока должны проводиться при температуре окружающего воздуха от -30 до +50°С и относительной влажности не более 85%.

Измерения плотности теплового потока позволяет оценить расход тепла через ограждающие конструкции и, тем самым, определить теплотехнические качества ограждающих конструкций зданий и сооружений.

Данный стандарт не применим для оценки теплотехнических качеств ограждающих конструкций, пропускающих свет (стекло, пластик и т.д.).

Рассмотрим, на чем основан метод измерения плотности теплового потока. На ограждающей конструкции здания (сооружения) устанавливается пластинка (так называемая «вспомогательная стенка»). Образующейся на этой «вспомогательной стенке» температурный перепад пропорционален в направлении теплового потока его плотности. Перепад температуры преобразуется в электродвижущую силу батарей термопар, которые располагаются на «вспомогательной стенке» и ориентированы параллельно по тепловому потоку, а соединены последовательно по генерируемому сигналу. В совокупности «вспомогательная стенка» и батарея термопар составляют измерительный преобразователь для измерения плотности теплового потока.

По результатам измерения электродвижущей силы батарей термопар рассчитывается плотность теплового потока на предварительно откалиброванных преобразователях.

Схема измерения плотности теплового потока приведена на чертеже.

1 - ограждающая конструкция; 2 -преобразователь теплового потока; 3 - измеритель э.д.с.;

t в, t н - температура внутреннего и наружного воздуха;

τ н, τ в, τ’ в - температура наружной, внутренней поверхностей ограждающей конструкции вблизи и под преобразователем соответственно;

R 1 , R 2 - термическое сопротивление ограждающей конструкции и преобразователя теплового потока;

q 1 , q 2 - плотность теплового потока до и после закрепления преобразователя

Источники инфракрасного излучения. Защита от инфракрасного излучения на рабочих местах

Источником инфракрасного излучения (ИК) является любое нагретое тело, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Длина волны с максимальной энергией теплового излучения определяется по формуле:

λ mах = 2,9-103 / T [мкм] (1)

где Т - абсолютная температура излучающего тела, К.

Инфракрасное излучение подразделяется на три области:

  • коротковолновая (X = 0,7 - 1,4 мкм);
  • средневолновая (к = 1,4 - 3,0 мкм):
  • длинноволновая (к = 3,0 мкм - 1,0 мм).

На организм человека электрические волны ИК диапазона оказывают, в основном, тепловое воздействие. При оценки этого воздействия учитывается:

· длина и интенсивность волны с максимальной энергией;

· площадь излучаемой поверхности;

· длительность облучения в течение рабочего дня;

· продолжительность непрерывного воздействия;

· интенсивность физического труда;

· интенсивность движения воздуха на рабочем месте;

· тип ткани, из которой изготовлена спецодежда;

· индивидуальные особенности организма.

К коротковолновому диапазону относятся лучи с длиной волны λ ≤ 1,4 мкм. Их характеризует способность проникать в ткани организма человека на глубину до нескольких сантиметров. Это воздействие вызывает тяжелые поражения различных органов и тканей человека с отягчающими последствиями. Наблюдается повышение температуры мышечных, легочных и других тканей. В кровеносной и лимфатической системах образуются специфические биологически-активные вещества. Нарушается работа центральной нервной системы.

К средневолновому диапазону относятся лучи с длиной волны λ = 1,4 - 3,0 мкм. Они проникают только в поверхностные слои кожи, а потому их воздействие на организм человека ограничивается повышением температуры подверженных воздействию участков кожи и повышением температуры тела.

Длинноволновой диапазон – лучи с длиной волны λ > 3 мкм. Воздействуя на организм человека, они вызывают наиболее сильное повышение температуры подверженных воздействию участков кожи, что нарушает деятельность дыхательной и сердечнососудистой систем и нарушает тепловой баланс оргазма, приводящий к тепловому удару.

Согласно ГОСТ 12.1.005-88 интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования и осветительных приборов не должна превышать: 35 Вт/м 2 при облучении более 50% поверхности тела; 70 Вт/м 2 при облучении от 25 до 50% поверхности тела; 100 Вт/м 2 при облучении не более 25%> поверхности тела. От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м 2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45 °С.

Температура поверхности оборудования, внутри которого температура близка к 100 °С, должна быть не выше 35 °С.

К основным видам защиты от инфракрасного излучения относятся:

1. защита временем;

2. защита расстоянием;

3. экранирование, теплоизоляция или охлаждение горячих поверхностей;

4. увеличение теплоотдачи тела человека;

5. индивидуальные средства защиты;

6. устранение источника тепловыделения.

Различают экраны трех типов:

· непрозрачные;

· прозрачные;

· полупрозрачные.

В непрозрачных экранах при взаимодействии энергии электромагнитных колебаний с веществом экрана происходит ее преобразование в тепловую энергию. Вследствие этого преобразования происходит нагрев экрана и он сам становится источником теплового излучения. Излучение противолежащей источнику поверхностью экрана условно рассматривается как пропущенное излучение источника. Становится возможным рассчитать плотность теплового потока, проходящего через единицу площади экрана.

С прозрачными экранами все обстоит иначе. Излучение, попадающее на поверхность экрана, распределяется внутри него согласно законам геометрической оптики. Этим и объясняется его оптическая прозрачность.

Полупрозрачным экранам присущи свойства как прозрачных, так и непрозрачных.

· теплоотражающие;

· теплопоглощающие;

· теплоотводящие.

На самом деле все экраны в той или иной степени обладают свойством поглощения, отражения или отведения тепла. Поэтому определение экрана к той или иной группе зависит от того, какое свойство наиболее сильно выражено.

Теплоотражающие экраны отличает низкая степень черноты поверхности. Поэтому они отражают большую часть падающих на них лучей.

К теплопоглощающим относятся экраны, у которых материал, из которого они выполнены, имеет малый коэффициент теплопроводности (высокое термическое сопротивление).

В качестве теплоотводящих экранов выступают прозрачные пленки, либо водяные завесы. Также могут быть использованы экраны, находящиеся внутри стеклянных или металлических защитных контуров.

Э = (q – q 3) / q (3)

Э = (t – t 3) / t (4)

q 3 - плотность потока ИК излучения с применением защиты, Вт/м 2 ;

t - температура ИК излучения без применения защиты, °С;

t 3 - темпера­тура ИК излучения с применением защиты, °С.

Используемые контрольно-измерительные приборы

Для измерения плотности тепловых потоков, проходящих через ограждающие конструкции, и проверки свойств теплозащитных экранов нашими специалистами были разработаны приборы серии .

Диапазон измерения плотности теплового потока: от 10 до 250, 500, 2000, 9999 Вт/м 2

Область применения:

· строительство;

· объекты энергетики;

· научные исследования и др.

Измерение плотности теплового потока, как показателя теплоизоляционных свойств различных материалов, приборами серии производят при:

· теплотехнических испытаниях ограждающих конструкций;

· определении тепловых потерь в водяных тепловых сетях;

проведении лабораторных работ в ВУЗах (кафедры «Безопасность жизнедеятельности», «Промышленная экология» и др.).

На рисунке приведен опытный образец стенда "Определение параметров воздуха рабочей зоны и защита от тепловых воздействий" БЖЗ 3 (призводство ООО «Интос+»).

На стенде располагается источник теплового излучения (рефлектор бытовой). Перед источником размещают экраны из разных материалов (металл, ткань и др.). За экраном внутри модели помещения размещается прибор на различных расстояниях от экрана. Над моделью помещения закрепляется вытяжной зонт с вентилятором. Прибор , помимо зонда для измерения плотности теплового потока, оснащен зондом для измерения температуры воздуха внутри модели. В целом стенд представляет собой наглядную модель для оценки эффективности различных видов тепловой защиты и локальной системы вентиляции.

С помощью стенда определяется эффективность защитных свойств экранов в зависимости от материалов, из которых они изготовлены и от расстояния от экрана до источника теплового излучения.

Принцип действия и конструктивное исполнение прибора ИПП-2

Конструктивно прибор выполняется в пластмассовом корпусе. На передней панели прибора располагаются четырех разрядный светодиодный индикатор, кнопки управления; на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя.

Внешний вид прибора

1 - Светодиодная индикация состояния аккумулятора

2 - Светодиодная индикация нарушения порогов

3 - Индикатор значений измерения

4 - Разъем для подключения зонда измерения

5 , 6 - Кнопки управления

7 - Разъем для подключения к компьютеру

8 - Разъем для подключения сетевого адаптера

Принцип работы

Принцип действия прибора основан на измерении перепада температур на “вспомогательной стенке”. Величина температурного перепада пропорциональна плотности теплового потока. Измерение температурного перепада осуществляется с помощью ленточной термопары, расположенной внутри пластинки зонда, выступающей в роли “вспомогательной стенки”.

Индикация измерений и режимов работы прибора

Прибор осуществляет опрос измерительного зонда, выполняет расчет плотности теплового потока и отображает её значение на светодиодном индикаторе. Интервал опроса зонда составляет около одной секунды.

Регистрация измерений

Данные, полученные от измерительного зонда, записываются в энергонезависимую память блока с определенным периодом. Настройка периода, считывание и просмотр данных осуществляется с помощью программного обеспечения.

Интерфейс связи

С помощью цифрового интерфейса из прибора могут быть считаны текущие значения измерения температуры, накопленные данные измерений, изменены настройки прибора. Измерительный блок может работать с компьютером или иными контроллерами по цифровому интерфейсу RS-232. Скорость обмена по интерфейсу RS-232 настраивается пользователем в пределах от 1200 до 9600 бит/с.

Особенности прибора:

  • возможность установки порогов звуковой и световой сигнализации;
  • передача измеренных значений на компьютер по интерфейсу RS-232.

Достоинством прибора является возможность попеременного подключения к прибору до 8-ми различных зондов теплового потока. Каждый зонд (датчик) имеет свой индивидуальный калибровочный коэффициент (коэффициент преобразования Kq), показывающий, насколько напряжение с датчика изменяется относительно теплового потока. Данный коэффициент используется прибором для построения калибровочной характеристики зонда, по которой определяется текущее измеренное значение теплового потока.

Модификации зондов для измерения плотности теплового потока:

Зонды теплового потока предназначены для проведения измерений поверхностной плотности теплового потока по ГОСТ 25380-92.

Внешний вид зондов теплового потока

1. Зонд теплового потока прижимного типа с пружиной ПТП-ХХХП выпускается в следующих модификациях (в зависимости от диапазона измерения плотности теплового потока):

ПТП-2.0П: от 10 до 2000 Вт/м 2 ;

ПТП-9,9П: от 10 до 9999 Вт/м 2 .

2. Зонд теплового потока в виде «монеты» на гибком кабеле ПТП-2.0.

Диапазон измерения плотности теплового потока: от 10 до 2000 Вт/м 2 .

Модификации зондов для измерения температуры:

Внешний вид зондов для измерения температуры

1. Погружные термопреобразователи ТПП-А-D-L на основе терморезистора Pt1000 (термопреобразователи сопротивления) и термопреобразователи ТХА-А-D-L на основе термопары ХА (термопреобразователи электрические) предназначены для измерения температуры различных жидких и газообразных сред, а также сыпучих материалов.

Диапазон измерения температуры:

Для ТПП-А-D-L: от -50 до +150 °С;

Для ТХА-А-D-L: от -40 до +450 °С.

Габаритные размеры:

D (диаметр): 4, 6 или 8 мм;

L (длина): от 200 до 1000 мм.

2. Термопреобразователь ТХА-А-D1/D2-LП на основе термопары ХА (термопреобразователь электрический) предназначен для измерения температуры плоской поверхности.

Габаритные размеры:

D1 (диаметр «металлического штыря»): 3 мм;

D2 (диаметр основания – «пятачка»): 8 мм;

L (длина «металлического штыря»): 150 мм.

3. Термопреобразователь ТХА-А-D-LЦ на основе термопары ХА (термопреобразователь электрический) предназначен для измерения температуры цилиндрических поверхностей.

Диапазон измерения температуры: от -40 до +450 °С.

Габаритные размеры:

D (диаметр) – 4 мм;

L (длина «металлического штыря»): 180 мм;

Ширина ленты – 6 мм.

В комплект поставки прибора для измерения плотности тепловой нагрузки среды входят:

1. Измеритель плотности теплового потока (измерительный блок).

2. Зонд для измерения плотности теплового потока.*

3. Зонд для измерения температуры.*

4. Программное обеспечение.**

5. Кабель для подключения к персональному компьютеру. **

6. Свидетельство о калибровке.

7. Руководство по эксплуатации и паспорт на прибор .

8. Паспорт на преобразователи термоэлектрические (температурные зонды).

9. Паспорт на зонд плотности теплового потока.

10. Сетевой адаптер.

* – Диапазоны измерения и конструкция зондов определяются на этапе заказа

** – Позиции поставляются по специальному заказу.

Подготовка прибора к работе и проведение измерений

1. Извлечь прибор из упаковочной тары. Если прибор внесен в теплое помещение из холодного, необходимо дать прибору прогреться до комнатной температуры в течение не менее 2-х часов.

2. Зарядить аккумуляторы, подключив к прибору сетевой адаптер. Время зарядки полностью разряженного аккумулятора не менее 4 часов. В целях увеличения срока службы аккумуляторной батареи рекомендуется раз в месяц проводить полную разрядку до автоматического выключения прибора с последующим полным зарядом.

3. Соединить измерительный блок и измерительный зонд соединительным кабелем.

4. При комплектации прибора диском с программным обеспечением, установить его на компьютер. Подключить прибор к свободному СОМ-порту компьютера соответствующими соединительными кабелями.

5. Включить прибор коротким нажатием кнопки "Выбор".

6. При включении прибора осуществляется самотестирование прибора в течение 5 секунд. При наличии внутренних неисправностей прибор на индикаторе сигнализирует номер неисправности, сопровождаемые звуковым сигналом. После успешного тестирования и завершения загрузки на индикаторе отображаются текущее значение плотности теплового потока. Расшифровка неисправностей тестирования и других ошибок в работе прибора приведена в разделе 6 настоящего руководства по эксплуатации.

7. После использования выключить прибор коротким нажатием кнопки "Выбор".

8. Если предполагается длительное хранение прибора (более 3 месяцев) следует извлечь элементы питания из батарейного отсека.

Ниже приведена схема переключений в режиме “Работа”.

Подготовка и проведение измерений при теплотехнических испытаниях ограждающих конструкций.

1. Измерение плотности тепловых потоков проводят, как правило, с внутренней стороны ограждающих конструкций зданий и сооружений.

Допускается проведение измерений плотности тепловых потоков с наружной стороны ограждающих конструкций в случае невозможности проведения их с внутренней стороны (агрессивная среда, флуктуации параметров воздуха) при условии сохранения устойчивой температуры на поверхности. Контроль условий теплообмена проводят с помощью термощупа и средств для измерения плотности теплового потока: при измерении в течение 10 мин. их показания должны быть в пределах погрешности измерений приборов.

2. Участки поверхности выбирают специфические или характерные для всей испытываемой ограждающей конструкции в зависимости от необходимости измерения локальной или усредненной плотности теплового потока.

Выбранные на ограждающей конструкции участки для измерений должны иметь поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, иметь одинаковые условия по лучистому теплообмену и не должны находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

3. Участки поверхности ограждающих конструкций, на которые устанавливают преобразователь теплового потока, зачищают до устранения видимых и осязаемых на ощупь шероховатостей.

4. Преобразователь плотно прижимают по всей его поверхности к ограждающей конструкции и закрепляют в этом положении, обеспечивая постоянный контакт преобразователя теплового потока с поверхностью исследуемых участков в течение всех последующих измерений.

При креплении преобразователя между ним и ограждающей конструкцией не допускается образование воздушных зазоров. Для исключения их на участке поверхности в местах измерений наносят тонкий слой технического вазелина, перекрывающий неровности поверхности.

Преобразователь может быть закреплен по его боковой поверхности при помощи раствора строительного гипса, технического вазелина, пластилина, штанги с пружиной и других средств, исключающих искажение теплового потока в зоне измерения.

5. При оперативных измерениях плотности теплового потока незакрепленную поверхность преобразователя склеивают слоем материала или закрашивают краской с той же или близкой степенью черноты с различием Δε ≤ 0,1, что и у материала поверхностного слоя ограждающей конструкции.

6. Отсчетное устройство располагают на расстоянии 5-8 м от места измерения или в соседнем помещении для исключения влияния наблюдателя на значение теплового потока.

7. При использовании приборов для измерения э.д.с., имеющих ограничения по температуре окружающего воздуха, их располагают в помещении с температурой воздуха, допустимой для эксплуатации этих приборов, и подключение к ним преобразователя теплового потока производят при помощи удлинительных проводов.

8. Аппаратуру по п.7 подготавливают к работе в соответствии с инструкцией по эксплуатации соответствующего прибора, в том числе учитывают необходимое время выдержки прибора для установления в нем нового температурного режима.

Подготовка и проведение измерений

(при проведении лабораторных работ на примере лабораторной работы “Исследование средств защиты от инфракрасного излучения”)

Подключить источник ИК излучения к розетке. Включить источник ИК излучения (верхнюю часть) и измеритель плотности теплового потока ИПП-2.

Установить головку измерителя плотности теплового потока на расстоянии 100 мм от источника ИК излучения и определить плотность теплового потока (среднее значение трех - четырех замеров).

Вручную переместить штатив вдоль линейки, установив головку измерителя на расстояниях от источника излучения, указанных в форме таблицы 1, и повторить измерения. Данные замеров занести в форму таблицу 1.

Построить график зависимости плотности потока ИК излучения от расстояния.

Повторить измерения по пп. 1 - 3 с различными защитными экранами (теплоотражающим алюминиевым, теплопоглощающим тканевым, металлическим с зачерненной поверхностью, смешанным - кольчуга). Данные замеров занести в форму таблицы 1. Построить графики зависимости плотности потока ИК излучения от расстояния для каждого экрана.

Форма таблицы 1

Оценить эффективность защитного действия экранов по формуле (3).

Установить защитный экран (по указанию преподавателя), разместить на нем широкую щетку пылесоса. Включить пылесос в режим отбора воздуха, имитируя устройство вытяжной вентиляции, и спустя 2-3 минуты (после установления теплового режима экрана) определить интенсивность теплового излучения на тех же расстояниях, что и в п. 3. Оценить эффективность комбинированной тепловой защиты по формуле (3).

Зависимость интенсивности теплового излучения от расстояния для заданного экрана в режиме вытяжной вентиляции нанести на общий график (см. п. 5).

Определить эффективность защиты, измеряя температуру для заданного экрана с использованием вытяжной вентиляции и без нее по формуле (4).

Построить графики эффективности защиты вытяжной вентиляции и без нее.

Перевести пылесос в режим "воздуходувки" и включить его. Направляя поток воздуха на поверхность заданного защитного экрана (режим душирования), повторить измерения в соответствии с пп. 7 - 10. Сравнить результаты измерений пп. 7-10.

Закрепить шланг пылесоса на одной из стоек и включить пылесос в режиме "воздуходувки", направив поток воздуха почти перпендикулярно тепловому потоку (немного навстречу) - имитация воздушной завесы. С помощью измерителя измерить температуру ИК излучения без "воздуходувки" и с ней.

Построить графики эффективности защиты "воздуходувки" по формуле (4).

Результаты измерений и их интерпретация

(на примере проведения лабораторной работы на тему «Исследование средств защиты от инфракрасного излучения» в одном из технических ВУЗов г. Москвы).

  1. Стол.
  2. Электрокамин ЭКСП-1,0/220.
  3. Стойка для размещения сменных экранов.
  4. Стойка для установки измерительной головки.
  5. Измеритель плотности теплового потока .
  6. Линейка.
  7. Пылесос Тайфун-1200.

Интенсивность (плотность потока) ИК излучения q определяется по формуле:

q = 0,78 х S х (T 4 х 10 -8 - 110) / r 2 [Вт/м 2 ]

где S - площадь излучающей поверхности, м 2 ;

Т - температура излучающей поверхности, К;

r - расстояние от источника излучения, м.

Одним из наиболее распространенных видов защиты от ИК излучения является экранирование излучающих поверхностей.

Различают экраны трех типов:

·непрозрачные;

·прозрачные;

·полупрозрачные.

По принципу действия экраны подразделяются на:

·теплоотражающие;

·теплопоглощающие;

·теплоотводящие.

Эффективность защиты от теплового излучения с помощью экранов Э определяется по формулам:

Э = (q – q 3) / q

где q - плотность потока ИК излучения без применения защиты, Вт/м 2 ;

q3 - плотность потока ИК излучения с применением защиты, Вт/м 2 .

Типы защитных экранов (непрозрачные):

1. Экран смешанный – кольчуга.

Э кольчуга = (1550 – 560) / 1550 = 0,63

2. Экран металлический с зачерненной поверхностью.

Э al+покр. = (1550 – 210) / 1550 = 0,86

3. Экран теплоотражающий алюминиевый.

Э al = (1550 – 10) / 1550 = 0,99

Построим график зависимости плотности потока ИК излучения от расстояния для каждого экрана.

Как мы видим, эффективность защитного действия экранов различается:

1. Минимальное защитное действие у смешанного экрана – кольчуга – 0,63;

2. Экран алюминиевый с зачерненной поверхностью – 0,86;

3. Наибольшим защитным действием обладает экран теплоотражающий алюминиевый – 0,99.

Нормативные ссылки

При оценке теплотехнических качеств ограждающих конструкций зданий и сооружений и установлении реальных расходов тепла через наружные ограждающие конструкции используются следующие основные нормативные документы:

· ГОСТ 25380-82. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции.

· При оценке теплотехнических качеств различных средств защиты от инфракрасного излучения используются следующие основные нормативные документы:

· ГОСТ 12.1.005-88. ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования.

· ГОСТ 12.4.123-83. ССБТ. Средства защиты от инфракрасного излучения. Классификация. Общие технические требования.

· ГОСТ 12.4.123-83 «Система стандартов безопасности труда. Средства коллективной защиты от инфракрасных излучений. Общие технические требования».

Что такое тепловое излучение? Приборы для измерения теплового излучения. Какой прибор лучше будет купить?

Измеритель теплового излучения с поверкой какой лучше купить?

Тепловое излучение - это электромагнитное излучение, которое возникает благодаря внутренней энергии тела. Обладает сплошным спектром, основной показатель которого зависит от температуры тела. Тепловое излучение излучает: лампы накаливания (спираль), электроплиты, атмосфера, нагретые металлы...

Причиной того, что вещество излучает электромагнитные волны, является устройство атомов и молекул из заряженных частиц, из-за чего вещество пронизано электромагнитными полями. В частности, при столкновениях атомов и молекул происходит их ударное возбуждение с последующим высвечиванием.

Если перед Вами встал вопрос приобретения измерителя теплового излучения, то данная статья Вам поможет сделать правильный выбор.

Для того, что бы Ваши замеры были легитимными, Вам необходимо средство измерение. Т.е. прибор, который внесен в Государственный реестр средств измерений РФ.

К Вашему "счастью" ☺ , область теплового излучения не может похвастаться большим числом приборов и средств измерений. Более того, в Реестре РФ всего 3 прибора, которые прошли испытания и позволяют измерять тепловое излучение (не путать с приборами, которые измеряют тепловое обучение!). И в данном разделе сайта, Вы сможете найти всю информацию по ним. Стоимость на измерители теплового излучения, их технические характеристики, а так же срок поставки. Основную сравнительную информацию можно получить - ознакомившись со следующей таблицей:

Средства измерения для определения параметров теплового излучения:

Наименование прибора:

Диапазон измерения: Основные особенности, комментарии: Стоимость: Страна производства:
Радиометр теплового излучения "ИК-метр" от 10 до 2500 Вт/м 2 Новый прибор для измерения энергетической яркости и интенсивности теплового потока, который успел зарекомендовать себя с хорошей стороны. На сегодняшний день является наиболее востребованным в данной области, опираясь на технические характеристики, срок поставки и цену. Так же плюсом является то, что в отличие от аналогов имеет межповерочный интервал 2 года. самая низкая РФ
Радиометр "Аргус-03" от 1 до 2 000Вт/м 2 Популярный прибор теплового излучения, давно зарекомендовавший и долгое время не имеющий аналогов на территории РФ. Основной недостаток данного средства измерения - срок поставки. Который может составлять 90 дней! За долгое время эксплуатирования зарекомендовал себя как очень надежный измеритель энергетической яркости. средняя РФ
Радиометр энергетической освещенности РАТ-2П от 10 до 2000 Вт/м 2 Зарубежный прибор для определения энергетической освещенности и ультрафиолетового обучения. самая высокая Украина

Тепловизор – оптико-электронный измерительный прибор, предназначенный для бесконтактного наблюдения и фиксации распределения температуры исследуемой поверхности. Тепловизоры в настоящее время являются полноценным компонентом набора инструментов технических инженеров – контроль температуры применяется во всех отраслях промышленности и строительства.

Пирометр - прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света. Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.


48.Технические мероприятия профилактики вредного влияния теплового излучения и высоких температур .

К числу мероприятий, способных ослабить вредное действие тепл. излучения, относятся: механизация работ, напр. на то, чтобы работники меньше подвергались тепловому облучению; устройство у тепловыделяющих произв. источников цепных или водяных завес; применение экранов из материалов, облад. малой теплопроводностью; осуществление аэрации горячих цехов; устройство специальных комнат отдыха, а также душей, снабжение работников подсол. газир. водой (3 г соли на 1 л воды); применение такой организации труда, которая допускает чередование лиц, работающих в сильно облучаемых местах; обязат. применение спец. очков для защиты от ИК излучения и особых стекол для предотвращения воздействия ультрафиолетовых лучей.



К группе санитарно-технических мероприятий относится применение коллект. средств защиты: локализация тепловыделений, теплоизоляция горячих поверхностей, экранирование источников либо раб. мест; возд. душирование, радиационное охлаждение, мелкодисперсное распыление воды; общеобменная вентиляция или кондиционирование воздуха. Общеобменной вентиляции при этом отводится ограниченная роль – доведение условий труда до допустимых с мин. эксплуат. затратами. Уменьшению поступления теплоты в цех способствуют мероприятия, обеспеч. герметичность оборудования. Плотно подогнанные дверцы, заслонки, блокировка закрытия технолог. отверстий с работой оборудования – все это значительно снижает выделение теплоты от открытых источников.

49. Средства коллективной защиты от вредного влияния теплового излучения и высоких температур .

Снижение уровня воздействия на работающих вредных веществ или его полное устранение достигается путем проведения технолог., санитарно - технических, лечебно - профилактич. мероприятий и применением СИЗ.

К технологическим мероприятиям относятся такие как внедрение непрер. технологий, автоматизация и механизация произв. процессов, дистанц. управление, герметизация оборудования, замена опасных технолог. процессов и операций менее опасными и безопасными.

Санитарно-технические мероприятия :

оборудование рабочих мест местной вытяжной вентиляцией или переносными местными отсосами, укрытие оборудования сплошными пыленепроницаемыми кожухами с эффективной аспирацией воздуха и др.

Когда технолог., санитарно-технические меры не полностью исключают наличие вредных веществ в воздушной среде, отсутствуют методы и приборы для их контроля, проводятся лечебно-профилактические мероприятия:

организация и проведение предварительных и периодических медицинских осмотров, дыхательной гимнастики, щелочных ингаляций, обеспечение лечебно-профил. питанием и молоком и др.

Особое внимание в этих случаях должно уделяться применению СИЗ, прежде всего для защиты органов дыхания (фильтрующие и изолирующие противогазы, респираторы, защитные очки, спец. одежда).

7.1. Включается источник теплового излучения. Интенсивность теплового излучения измеряется актинометром , для чего открывается крышка с тыльной стороны актинометра и направляется в сторону источника тепла. Замеры осуществляются при отсутствии защитного экрана, поочередно с одним, двумя, тремя рядами цепей и с экраном из оргстекла. Продолжительность каждого замера – не менее 30 секунд.

7.2. Результаты измерений записываются в 3-й столбец таблицы 2 отчета, в 4-й столбец таблицы записываются значения интенсивности теплового излучения, переведенные в Вт/м 2 (1 кал/см 2 мин = 70 Вт/м 2).

7.3. Согласно ГОСТ 12.1.005-88 допустимая величина интенсивности теплового излучения составляет:

35 Вт/м2 – при облучении поверхности тела 50% и более

70 Вт/м2 – при облучении поверхности тела от 25 до 50%

100 Вт/м2 – при облучении поверхности тела не более 25%

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25 % поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

7.4.Делаются выводы:

    о необходимой защите (виде экрана) работника в соответствии с заданной долей площади поверхности облучения;

    об эффективности защитных экранов.

8.Общие теоретические сведения.

Метеорологические условия (микроклимат) являются важным фактором, оказывающим влияние на здоровье и работоспособность человека.

Нормируемые параметры микроклимата - это температура, относительная влажность, скорость движения воздуха и в некоторых производствах - интенсивность теплового излучения.

В цехах промышленных предприятий технологические процессы по выплавке и обработке металлов, по переработке и обработке лубяных волокон древесины, при обработке пряж и других материалов сопровождаются большими выделениями тепла, в результате чего значительно повышается температура воздуха рабочей зоны.

Нередко вблизи источников нагрева (нагревательные печи, сушилки и др.) рабочие подвергаются тепловому излучению.

Интенсивность теплового излучения - количество лучистого тепла (в калориях), падающего на 1 см 2 облучаемой поверхности за одну минуту (обозначается в кал/см 2 мин) или количество лучистого тепла (в килокалориях), падающего на 1 м 2 облучаемой - поверхности за 1час (обозначается в ккал/м 2 ч), которое также может оцениваться в Вт/м 2 .

Некоторые цеха (например, прядильные мокрого прядения, ткацкие, бельно-отделочные и др.) характеризуется высокой влажностью воздуха, причем в ткацких цехах она создается искусственно, для улучшения технологического процесса.

Повышенная подвижность воздуха иногда вызывает неприятные ощущения у рабочих, а сквозняки нередко являются причиной простудных заболеваний. Неблагоприятный микроклимат вызывает переутомление, понижение скорости реакции, скованность движений, что приводит к снижению сопротивляемости организма вредным воздействиям среды и к повышению опасности травмирования.

Благоприятные метеорологические условия являются важной предпосылкой для предупреждения заболеваемости, травматизма и способствуют повышению работоспособности, что приводит к росту производительности труда.

В связи с вышеизложенным, обеспечение оптимальных параметров микроклимата в рабочей зоне производственных помещений является важной задачей руководителей промышленных предприятий.

С физической точки зрения человек представляет собой «нагретое» до определенной температуры влажное тело. При усвоении продуктов питания в организме человека протекают биохимические процессы, сопровождающиеся выделением тепла. В состоянии покоя в теле человека образуется около 80 ккал/ч (93 Дж/с) тепла. При выполнении человеком работы (особенно физической) в зависимости от степени ее тяжести выделяется тепла 250-400 ккал/ч (290-464 Дж/с) и более.

В связи с тем, что на полезную работу затрачивается в среднем 15-20 % тепла, то количество тепла, образующегося в теле человека во время физического труда, в несколько раз больше теплового эквивалента производимой им работы. Однако для человека является необходимым условием, чтобы величина теплообразования в теле всегда была равна величине теплоотдачи (этим и объясняется постоянство температуры человеческого тела). Способность человеческого организма сохранять температуру тела на почти постоянном уровне при довольно значительных колебаниях температуры окружающей среды носит название терморегуляции .

Если этот тепловой баланс нарушается, то в случае недостаточной теплоотдачи наступает перегрев человеческого тела, а в случае избыточной теплопотери - переохлаждение. И то и другое приводит к нарушению нормального самочувствия и к снижению работоспособности.

Воздействие высокой температуры воздуха на организм человека, особенно в сочетании с высокой влажностью или тепловым излучением, может вызвать нарушение деятельности сердечно-сосудистой системы за счет обеднения организма водой. Потеря жидкости может достичь 5-8 литров в смену. Кровь при этом сгущается, становится более вязкой, нарушается питание тканей и органов; в легких случаях ухудшается самочувствие, а в тяжелых - наступают острые болезненные расстройства, называемые тепловым ударом.

Кроме того, лучистое тепло, воздействуя на зрение, может вызывать серьезные заболевания глаз – катаракту.

Тепло, образующееся в теле человека, отдается в окружающую среду тремя путями: излучением, конвекцией и испарением пота.

Эффективность отдачи организмом тепла зависит от температуры, относительной влажности и скорости движения окружающего воздуха.

С физиологической точки зрения совокупность перечисленных параметров окружающей среды должна быть такой, чтобы достигнутое тепловое равновесие соответствовало зоне хорошего самочувствия человека, зоне комфорта , т.е. чтобы отдача избыточного тепла происходила с наименьшими затратами энергии.

Микроклимат считается комфортным, если параметры температуры, относительной влажности и скорости движения воздуха соответствуют оптимальным нормам.

Оптимальные (комфортные) метеорологические условия в цехах должны обеспечиваться системами кондиционирования воздуха.

В качестве мер борьбы против тепловой радиации применяется теплоизоляция, экранирование, устройство водяных завес и устройство воздушных душей.