Наука пока еще сказать не может даже приблизительно, даже с ошибкой на миллионы лет. Бесспорно только, что живое вещество изменялось на протяжении сотен миллионов лет жизни Земли в зависимости от условий среды, условий существования организмов.

Развитие растительных и животных организмов

Сравнивая растительный и животный организмы , в них можно найти глубокие различия. Если же переходить от высших форм к низшим, от более высокоорганизованных к менее организованным, эти различия постепенно сглаживаются. Простейшие представители животных и растений настолько сближаются друг с другом, что деление их является условным и установить тут резкую границу не представляется возможным. Это убедительно говорит о единстве жизни .

Жизнь постепенно развивалась и совершенствовалась. В результате непрерывных изменений появились новые растительные и животные организмы, лучше приспособившиеся к новой среде обитания.

Знакомый нам растительный и животный мир - только один из этапов того грандиозного по времени процесса развития жизни, который начался очень давно.

История возникновения жизни на Земле в пластах земной коры

Пласты эти, словно страницы особой книги, увлекательной книги о жизни Земли. Надо только уметь читать ее обветшалые, иногда слишком разрозненные страницы.

В глубоком овраге или на берегу реки можно обнаружить раковины, необычные по виду и форме, отпечатки растений и животных на камне, камни, похожие на пчелиные соты или на маленькие бараньи рожки, а также заостренные с одной стороны каменные трубочки, различные по величине и толщине. Они несколько напоминают обломки каменных пальцев. За это сходство их в просторечии так и называют - «чертовыми пальцами».


Чертов палец

Может посчастливиться также найти необычной формы зубы, кости и даже целые скелеты, отпечатки, иногда огромных размеров, невиданных никем животных.


Породы, слагающие толщи земной коры, бывают не менее примечательны, чем те ископаемые остатки организмов, которые в них встречаются. В одних местах наше внимание привлекают синие, красные и черные глины, в других - черные, красные и зеленые песчаники, белые и зеленые пески, известняки, порой переполненные остатками различных организмов.


Исследователи природы давно уже отмечали, что в разных пластах встречаются остатки различных организмов.

В одних пластах, например под Петербургом, поражает обилие мелких плоских раковинок - «оболюс», величиной приблизительно с двухкопеечную монету («оболос» по-гречески мелкая разменная монета - обол), в других пластах, например под Москвой,-изобилие «чертовых пальцев».


Изобилие «чертовых пальцев» в пластах

Отсюда был сделан тот вывод, что пласты эти образовались в разное геологическое время, когда значительное распространение в морских водоемах получали именно эти организмы.

Оболюс населял древнейшее Силурийское море, которое возникло, как определяют геологи приблизительно 360 миллионов лет тому назад и существовало в течение 40 миллионов лет. Это море занимало огромную площадь начиная от восточных границ западной Европы до Аральского моря на востоке и приблизительно от широты г. Тулы на севере до Кавказских гор на юге.

Современные моря, например Черное, тоже выбрасывают огромные массы всевозможных ракушек. На евпаторийском «золотом» пляже вас поразит изобилие ракушки. Местные умельцы искусно украшают ею свои незатейливые сувениры - коробочки, рамочки для фотокарточек и различные безделушки. Наряду с художественным назначением ракушка хорошо используется вместо балластных песков для железнодорожного полотна.

Толщи черноморской ракушки послужили исходным материалом для формирования пластов ракушечника - прекрасного строительного материала, хорошо поддающегося обработке.


Ракушечник - прекрасный строительный материал

У «чертова пальца» не менее интересная история. Черт здесь вспоминается только по невежеству: это - не что иное, как обломки внутренней раковины древнего головоногого моллюска белемнита, жившего в далекую мезозойскую эру, приблизительно 185 миллионов лет тому назад. Название животного происходит от древнегреческого слова «белемнон» - стрела, наконечник которой и походил в общем на «чертов палец».


Потомки белемнитов

Немногочисленные потомки белемнитов - каракатицы и гигантские страшилища - осьминоги, или спруты, водятся в современных морях, как холодных, так и теплых, как вблизи берега, так и на больших глубинах (до 3500 метров). Большинство головоногих - хищники; иногда они достигают 17 метров, из которых 6 метров приходится на тело животного, остальное - на щупальца - «ноги», числом до десяти.


Плавают головоногие особым способом: сильным сокращением мышц своего тела они выбрасывают струю воды из ротового отверстия. От этого толчка животное стремительно несется, как торпеда. Можно подумать, что оно плавает задом наперед. В случае опасности некоторые головоногие выпускают содержимое особого чернильного мешка и за мутной завесой становятся невидимыми для врага.

Из содержимого чернильного мешка изготовляется знаменитая китайская тушь и коричневая краска - сепия. Многие головоногие, особенно каракатицы, идут в пищу (в Китае) как в свежем, так и сушеном виде.

Самый «чертов палец» находился в хвостовой части животного и обеспечивал хищнику быстроту движения.

Древние моря

Древние головоногие в изобилии водились в Меловом море , которое в первую половину мелового периода заливало широкую полосу вдоль Уральского хребта, вдаваясь глубоким заливом на запад до меридиана Тверь - Калуга, а во вторую половину занимало почти всю южную половину Европейской части России до южных границ с Турцией и Ираном. В этом южном районе Мелового моря уже выявлялся в виде скалистого острова Главный Кавказский хребет.

Исследование образования пластов Земли

Если в пластах Земли отдаленных друг от друга районов, например под Москвой и под Ульяновском, находят в изобилии «чертовы пальцы» или другие какие-либо одинаковые органические остатки,- это убедительно говорит о том, что данные пласты образовались в одно и то же геологическое время, иначе - в один и тот же геологический период, эпоху, век и т. д.

Изучение пластов земной коры в четвертичный период

Интересный материал может нам дать изучение пластов земной коры, образовавшихся за ближайший к нам миллион лет. Этот геологический период, продолжающийся и в настоящее время, называется четвертичным периодом.

В самых верхних пластах Нижнего и Среднего Поволжья, например в Астраханской, Волгоградской, Саратовской и Куйбышевской областях, особенно в Заволжье, встречаются ракушки, похожие на те, что и сейчас живут в Каспийском море.


По находкам этих ракушек удалось установить границы некогда существовавшего огромного Арало-Каспийского моря . На коренном берегу его расположены сейчас Волгоград и Саратов. Исследователи даже могут точно установить, что северный узкий залив моря проходил вдоль высокого правого берега Камы далеко на северо-восток.

Таким это море было еще около 100 тысяч лет назад, когда большая часть Европейской территории России находилась под покровом великого оледенения и толща льда достигала, как полагают геологи, до двух километров.

В более глубоких пластах встречаются в Поволжье кости быков-бизонов, диких лошадей, огромных верблюдов, мамонта, исполинского оленя, волосатого носорога, пещерного льва и других исчезнувших ныне животных.

Чем глубже будем мы проникать в пласты, тем чаще будут встречаться кости животных, все больше и больше отличающихся от современных представителей животного мира.


Окаменевшие остатки животных

Изучая окаменевшие остатки жизни минувших эпох, геологи словно переворачивают каменные страницы великой книги природы. Однако она не дает часто исчерпывающего ответа: многих страниц не хватает, так как далеко не все организмы, существовавшие в прошлые эпохи жизни нашей планеты, запечатлели на камне свой след.


Отпечаток каменевшего червя

От длинной цепи жизни, начиная с возникновения живого вещества до совершеннейшей формы - человека, сохранились только отдельные обрывки, многих звеньев этой цепи недостает.

Наиболее древние пласты земной коры, сильно измененные в процессе ее формирования, не содержат почти никаких признаков органической жизни.

Образование ископаемых организмов

Более отчетливые следы организмов начинают появляться в тех породах, которые образовались из осадков древних водоемов.

Погребенные в этих осадках организмы и их скелеты постепенно превращались при благоприятных условиях в камень, иначе сказать минерализовались.


Минерализовавшиеся находки

Их органическое вещество замещалось из растворов минеральным, например углекислой известью, кремнеземом и другими веществами. Так образовались различные окаменевшие раковины, кости, куски древесины и даже целые древесные стволы.


Если из кусочка окаменевшей древесины отшлифовать тоненькую прозрачную пластинку (тоньше листа бумаги), так называемый шлиф, то под микроскопом мы отчетливо увидим внутреннее строение древнейшей древесины.

Иногда сохраняются не самые раковины, части растения и т. п., а только их отпечатки, например отпечатки листьев растений.


Встречаются также слепки, образовавшиеся из материала, заполнившего раковину и впоследствии отвердевшего.

Так получаются «внутренние ядра», как их называют геологи. Они напоминают отливки из металла по определенной форме. Когда же растворяется сама раковина, получается слепок наружной ее формы, или «наружное ядро».

Среда, в которой сохранялись остатки животных, определяла их сохранность: в грубозернистых песках остатки животных растворялись циркулирующими водами, в глинах - раздавливались, а в метаморфических породах - совершенно исчезали.

Только тонкозернистые иловатые осадки, торф, природный асфальт и особенно смола хвойных деревьев определяли исключительную сохранность органических остатков. Насекомые, например, и цветы, попавшие миллионы лет назад в жидкую древесную смолу, сохранились целиком без малейших изменений, как живые. Чем это можно объяснить?

Дело в том, что смола постепенно твердела, каменела, превращаясь в янтарь - полудрагоценный золотистый камень, нередко совершенно прозрачный. Из янтаря выделывают бусы, мундштуки, броши и т. п. В янтаре часто встречаются различные насекомые, особенно муравьи.


Вот что написал об этих диковинках Ломоносов приблизительно 260 лет тому назад:

В тополевой тени гуляя, муравей
В прилипчивой смоле увяз ногой своей.
Хотя он у людей был в жизнь свою презренный:
По смерти в янтаре у них стал драгоценный.

Далеко не всегда, особенно в старину, геологические находки получали правильное определение и назначение. Встречались и незабываемые курьезы. В одном, например, испанском соборе в XVII веке коренной зуб мамонта почитался за несомненный зуб святого.

Страдающие зубной болью прикладывались к Мамонтову зубу и давали в общем неплохой доход «святым отцам». Отметим, что приблизительные размеры мамонтового зуба: длина корня -12 сантиметров, длина жевательной поверхности - 14 сантиметров, а ширина ее - 7 сантиметров. Каждому человеку, полагается иметь тридцать два зуба (при полном их комплекте). Какой же величины был рот святого, судя по неоспоримым данным самой святыни.


Необходимо отметить, что сказания о великанах, превосходивших по росту человека раз в двадцать, встречались и в старинных, «научных» трактатах того времени.

Встречались еще более тяжелые случаи с геологическими находками. Отпечаток скелета древней ящерицы был признан, например, с благословения «ученых мужей» первой четверти XVIII века за скелет человека, утонувшего во время «всемирного потопа».

Еще с детства у меня на полке стоит интересная книжка об истории нашей планеты, которую читают уже мои дети. Постараюсь кратко передать то, что мне запомнилось, и расскажу, когда появились живые организмы.

Когда появились первые живые организмы

Зарождение произошло благодаря ряду благоприятных условий не позже чем 3,5 млрд. лет назад - в архейскую эру. Первые представители живого мира имели простейшее строение, однако постепенно в результате естественного отбора сложились условия для усложнения организации организмов. Это привело к появлению совершенно новых форм.


Итак, последующие периоды развития жизни выглядят следующим образом:

  • протерозой - начало существования первых примитивных многоклеточных, например, моллюсков и червей. Помимо этого в океанах развивались водоросли - предки сложноорганизованных растений;
  • палеозой - это время разлива морей и значительных изменений в очертаниях суши, что привело к частичному вымиранию большей части животных и растений;
  • мезозой - новый виток в развитии жизни, сопровождающийся возникновением массы видов с последующим прогрессивным видоизменением;
  • кайнозой - особо важный этап - появление приматов и развитие из них человека. В это время планета приобрела привычные нам очертания суши.

Как выглядели первые организмы

Первые существа представляли собой небольшие комочки белков, совершенно не защищенные от какого-либо воздействия. Большая часть погибала, однако выжившие были вынуждены приспосабливаться, что положило начало эволюции.


Несмотря на всю простоту первых организмов, они обладали важными способностями:

Можно сказать, что нам повезло - в истории нашей планеты практически отсутствовали радикальные изменения климата. В противном случае даже малое изменение температуры могло уничтожить маленькую жизнь, а значит, не появился бы человек. Первые организмы не обладали ни скелетом, ни раковинами, поэтому ученым достаточно сложно проследить историю по геологическим отложениям. Единственное, что позволяет утверждать о жизни в архее - содержание пузырьков газа в древних кристаллах.

В современной науке рассматривают несколько теорий возникновения жизни на Земле. Большинство современных моделей свидетельствуют, что органические соединения – первые живые организмы появились на планете приблизительно 4 млрд. лет назад .

Вконтакте

Развитие представлений о появлении жизни

В определенный исторический период ученые по-разному представляли себе, как появилась жизнь на . До ХХ века огромную роль в научных кругах отыгрывали следующие гипотезы:

  1. Теория самозарождения.
  2. Теория стационарного состояния жизни.
  3. Теория Опарина (частично поддерживается и сейчас).

Теория самозарождения

Интересно, но теория самозарождения жизни на планете возникла еще в древние времена . Она существовала вместе с теорией божественного происхождения всех живых организмов на планете.

Древнегреческий научный деятель Аристотель считал, что гипотеза самозарождения является правдивой , тогда как божественная – лишь отклонение от действительности. Он полагал, что жизнь зародилась спонтанно .

Согласно его мыслям, теория самозарождения заключается в том, что некое неизвестное людям «активное начало» при определенных условиях способно создать из неорганического соединения простой организм .

После принятия христианства в Европе и его распространения, данное научное предположение отошло на второй план – его место заняла божественная теория .

Теория стационарного состояния

Согласно этому научному предположению нельзя ответить, когда возникла жизнь на Земле, так как она существовала вечно . Таким образом, последователи теории свидетельствуют о том, что виды никогда не зарождались – они способны только исчезнуть или изменить свою численность (). Гипотеза стационарного состояния жизни была довольно популярной вплоть до середины XX века .

Так называемая «теория вечности жизни» потерпела всеобщий крах, когда было установлено, что Вселенная тоже не существовала всегда , а была создана после Большого взрыва. Отвечая на вопрос: сколько форм жизни существовало изначально, выплывает ответ, что все четыре, включая вирусы, что противоречит общепризнанной .

По этой причине гипотеза не обсуждается в академических научных кругах. «Теория вечности жизни» представляет собой исключительно философский интерес, так как ее выводы во многом не сходятся с современными достижениями науки.

Теория Опарина

В ХХ веке внимание ученых привлекла статья академика Опарина, которая вернула интерес к теории самозарождения жизни . Он рассматривал в ней некие «праогранизмы» – коацерватные капли или просто «первичный бульон», как окрестили их в научных кругах.

Эти капли представляли собой белковые шарики, притягивающие молекулы и жиры, которые затем связывались. Так были созданы первые носители информации – первые праклетки , в которых содержится ДНК.

Данная гипотеза не дает ответ, откуда вообще появилась , а потому в академических кругах ее многие опровергают .

Предыдущие теории возникновения жизни на Земле не рассматриваются, как основные в современной научной мысли. Небольшая группа ученых предполагает также, что жизнь могла зародиться в горячей воде , которая окружает подводные вулканы. Данная гипотеза не является основной , но ее пока не опровергли, а потому она достойна упоминания.

Основные теории зарождения жизни на Земле

Основные теории зарождения жизни на Земле появились не так давно, а именно в ХХ веке – периоде, когда человечество совершило больше открытий, нежели за всю свою предыдущую историю.

Современные гипотезы возникновения жизни на Земле в разной мере подтверждены рядом исследований, и являются ключевыми для обсуждения в академических кругах. Среди них можно отметить следующие:

  • биохимическая теория возникновения жизни;
  • гипотеза мира РНК;
  • теория мира ПАУ.

Биохимическая теория

Ключевой считается биохимическая теория возникновения жизни на планете, которой придерживается большинство научных деятелей.

Химическая эволюция предшествовала появлению органической жизни . Именно в ходе этого этапа появляются первые живые организмы, которые возникли в результате химических реакций из неорганических молекул.

Появление органических форм жизни 4 млрд. лет назад в результате реакций весьма вероятно, так как именно тогда существовала наиболее благоприятная среда.

Температура в 1000 градусов считается оптимальной. Содержание кислорода в воздухе было минимальным, ведь в больших количествах он разрушает простые органические соединения.

Мир РНК

Мир РНК является всего лишь гипотезой, которая свидетельствует о том, что до возникновения ДНК генетическую информацию хранили РНК-соединения.

В 1980-х годах было доказано, что РНК-соединения могли существовать автономно и самовоспроизводиться. Миллионы лет жизненного цикла РНК привели к тому, что в ходе мутаций возникли соединения ДНК , которые выступили, как специализированные хранилища генов. Эволюция РНК была доказана множеством экспериментов , которые частично объясняют происхождение жизни на Земле и отвечают на вопрос, как развивалась жизнь на Земле.

Мир ПАУ (полиароматических углеводородов)

Мир ПАУ считается этапом химической эволюции и свидетельствует о том, что из ПАУ возникли первые РНК, что в дальнейшем привело к созданию ДНК и жизни на планете.

ПАУ можно наблюдать и сейчас – они распространены во Вселенной и впервые были обнаружены в туманностях по всему космосу. Ряд исследователей называют ПАУ «семенами жизни».

Альтернативные теории

Так уж сложилось, что самые интересные теории являются альтернативными, а многие научные деятели даже высмеивают их. Достоверность альтернативных предположений подтвердить пока невозможно, и они частично, или во многом противоречат современным научным представлениям , но их упоминание обязательно.

Космическая гипотеза

Согласно данному предположению на Земле никогда не существовало жизни, и она не могла зародиться здесь, так как не было никаких предпосылок. Первые живые организмы появились на планете после падения космического тела , которое принес их на себе из другой галактики.

Данная гипотеза не отвечает на вопрос: сколько форм жизни на нем находились, какими они были, и как дальше они развивались.

Также невозможно установить, когда упало это космическое тело. Но самое главное – ученые не верят в то, что любой организм мог выжить на падающем космическом теле после его вхождения в атмосферу Земли.

В последние годы ученые обнаружили бактерии, которые способны существовать при экстремальных обстоятельствах и даже открытом космосе, но при горении метеорита или астероида они бы точно не выжили.

Гипотеза НЛО

Выделяя самые интересные гипотезы, нельзя не упомянуть о предположении, что жизнь на Земле – это дело рук пришельцев. Приверженцы данной гипотезы считают, что в такой огромной Вселенной вероятность существования других форм разумной жизни очень велика. Наука также не отрицает данного факта , так как люди до сих пор не исследовали 99% космоса.

Последователи гипотезы НЛО говорят, что одна из разумных форм жизни, которых мы называем пришельцами, специально занесла жизнь на Землю . Есть несколько предположений, почему они создали человека.

Одни говорят, что это всего лишь часть эксперимента , в ходе которого они наблюдают за людьми. Приверженцы такого предположения не могут дать достоверного ответа на то, зачем им наблюдать за людьми, и в чем смысл этого эксперимента.

Вторые свидетельствуют о том, что некая раса космических существ занимается распространением жизни во Вселенной , и люди – одна из многих созданных ими рас. Следовательно, существуют некие праотцы всего живого , которых человек мог принять за богов.

Космическая теория происхождения жизни на Земле не отвечает на главный вопрос: где первоначально зародилась жизнь, перед тем как она была занесена на Землю?

Теологическая гипотеза

Внимание! Божественная теория происхождения жизни на планете является самой древней среди всех, и вместе с тем она считается и одной из самых распространенных в XXI веке.

Приверженцы гипотезы верят в некое всемогущее существо или существ, которых принято называть богами.

В различных религиях у богов разные имена, как и их количество. Христианство говорит только об одном боге, как и ислам, а вот язычники верили в десятки, а то и сотни богов, каждый из которых отвечает за что-то определенное.

К примеру, один бог считается творцом любви, а второй — повелевает морями.

Христиане считают, что Бог создал Землю и жизнь на ней всего за семь дней. Именно он создал первого мужчину и женщину, которые и стали прародителями человечества.

Поскольку миллиарды людей на планете относят себя к определенной религии, они считают, что вся жизнь была создана именно руками бога или богов.

И хотя во многих религиях совпадают одни и те же факты, в научных кругах отрицают существование всемогущего существа , которое создало мир и жизнь в нем, так как данная теория противоречит многим научным достижениям и открытиям.

Также божественная гипотеза не дает возможности установить, когда возникла жизнь на Земле. Некоторые священные писания и вовсе не содержат этой информации, в остальных данные банально не совпадает, что ставит гипотезу под огромные сомнения.

Ни одна из выше названых теорий не является идеальной и не может всесторонне раскрыть вопрос происхождения жизни на планете. Какой теории придерживаться – решать только вам.

Общепризнанная теория – вся вселенная была сжата до размеров протона, но после мощного взрыва она расширилась до бесконечности. Это событие произошло около 10 миллиардов лет назад и в результате, получившуюся вселенную наполнила космическая пыль, из которой начали формироваться звезды и планеты около них. Земля по космическим меркам, является очень молодой планетой, она сформировалась около пяти миллиардов лет назад, но вот как возникла на ней жизнь? На этот вопрос ученые до сих пор не могут найти однозначного ответа.

Согласно теории Дарвина, жизнь на Земле возникла, как только установились подходящие условия, то есть, появилась атмосфера, температура обеспечивающая протекание жизненных процессов и вода. По мнению ученого, первые простейшие одноклеточные организмы, появились именно под воздействием Солнца на воду. Позднее, они эволюционировали до бурых водорослей и других видов растений. Таким образом, если следовать этому правилу, все многоклеточные виды на планете произошли от растений. Ответа же на самый главный вопрос так и не получено: « Каким образом может появиться жизнь из ничего, пусть даже и под воздействием Солнца?». Достаточно провести простой опыт – налить в банку скважинной воды, после герметично закрыть и поставить на солнечный свет. В любом случае, жидкость останется такой же как и была, возможно произойдут микроскопические изменения в ее составе, но микроорганизмы там не появятся. Если же провести тот же опыт с открытой банкой, то уже через несколько дней можно будет заметить, как стенки начинают покрываться слоем одноклеточных водорослей.

Исходя из этого, можно сказать, что для зарождения жизни и даже самых простейших ее форм, необходимо постороннее вмешательство. Конечно, версия о самостоятельном происхождении видов весьма соблазнительна тем, что доказывает якобы самостоятельность человечества не обязанного Богу или пришельцам с иных планет.

В последнее время все больше появляется сторонников космического происхождения, как человека, так и всей биосферы. Как ни странно, однако исследователи в своих изысканиях совмещают обращение не только к артефактам уже найденным или находимым, но и к Библии. Если интерпретировать написанное там, на обычный язык, то можно провести аналогии не с чудесами, а с вполне объяснимыми физическими явлениями. Исходя из этого материала, существует некий высший разум, который и заселил планету живыми существами, а также человеческой расой. В книге сказано, что Бог создал человека по своему образу и подобию, то есть, не исключено, что мы являемся копией, во всяком случае, внешне повторяем своего создателя.

Человек является биороботом – то есть искусственно созданным организмом с интеллектом, с заложенной возможностью к самосовершенствованию. Не исключено, что момент заселения людьми планеты, как раз и описывается в эпизоде, когда Адам с Евой были изгнаны из райского сада на Землю, где им пришлось самостоятельно приспосабливаться к жестким жизненным условиям. Вполне может быть, что под райским садом подразумевается место, где сделанные создателем биороботы проходили тестирование в тепличных условиях и после проверки работоспособности, их выпустили в суровую реальность.

Конечно же остается вопрос: «А как же в таком случае многообразие видов животных? Ведь не мог же создатель создавать виды, подвиды и отряды, вплоть до одноклеточных существ?». Предполагается, что здесь все же имела место эволюция, однако более ускоренная и происходящая под контролем создателей. Нельзя не отрицать тот факт, что в каждом из видов животных, все же есть признаки предшествующего по эволюционной лестнице вида. Птицы очень сильно похожи на пресмыкающихся, в особенности вытянутой формой клюва и кожей своих лап. Очертания пресмыкающихся, в свою очередь сильно напоминают рыб, ну а многие млекопитающие вобрали в себя признаки сразу нескольких предшествующих видов. Смотря на кошку без труда можно угадать признаки, как пресмыкающихся, так и земноводных. Любовь к теплому месту, передалась кошачьим скорее всего в генах, и несмотря на то что они теплокровные, всегда предпочитают обитать там, где есть источник тепла. Такой же признак характерен именно для холоднокровных животных, неспособных выработать тепло самостоятельно. Изучая же внимательно кошачий глаз можно заметить, что он очень похож на глаза крокодила, да и форма головы с небольшими изменениями напоминает змеиную. Порой складывается такое впечатление, что над созданием видов, работал некто, таким же способом, как, например, работают конструктора автоконцерна, беря за основу шасси предыдущего автомобиля и добавляя немного изменений.

Если это так, то неудивительно, что некоторые из животных видов, просто вызывают недоумение, ассоциируясь с ситуацией, когда при сборке не хватает деталей и используют то, что есть в наличии. Примеров таких животных особенно много в Австралии. Помимо кенгуру, относящегося к грызунам, но обладающего мощным опорно-двигательным аппаратом как у лошади, есть и другие занимательные виды, например, утконос. Это животное относится к млекопитающим, но размножается как птицы – откладывает яйца и имеет костяной клюв, похожий на гусиный. Строение его тела очень похоже на бобра, а родившиеся детеныши питаются молоком не через соски матери, а слизывая выступающую на поверхности брюха жидкость. Сами ли создатели выполняли такую кропотливую работу, или же задали только базовое направление в развитии, а формирование отдельных подвидов уже происходило самостоятельно – на сегодня этот вопрос остается открытым.

Варианты эволюции можно рассматривать с разных сторон, но большинство исследователей сходятся все же во мнении, что сама эволюция, если она и имела место, является всего лишь следствием, а вот причину предстоит выяснить. Не менее популярно мнение, что причиной появления жизни на Земле, стало падение метеорита, на котором в замерзшем состоянии находились простейшие одноклеточные организмы. Поскольку к тому времени на планете уже установился теплый климат, а большую часть поверхности занимал древний мировой океан, то создались все условия для последующего развития жизни. Бытует также версия, что метеорит на самом деле был послан разумными существами именно с целью заселения планеты, что также не лишено права на существование.

Вместо метеорита мог быть и просто оптический информационный луч, например, отправленный из другой вселенной или даже другого измерения. В самом деле, зачем таким высокоразвитым существам посылать сквозь миллиарды световых лет, что-то материальное? При своем уровне развития они уже давно смогли открыть возможности телепортации и свободно оперировать пространством и временем, появляясь именно там где это необходимо. Переданная с помощью луча информация здесь на земле материализовалась, в те же самые организмы и, таким образом был запущен процесс эволюции.

Конечно же жизнь могла быть не только спровоцирована случайно залетевшим метеоритом, версия о том что донором мог стать Марс также находит немало сторонников. Тайну этой планеты до сих пор не могут разгадать. Все что имеется на руках у ученых, это снимки прореженной глубокими впадинами красной поверхности, загадочное лицо, скорее всего являющееся особенностью рельефа и незначительные пробы грунта. Затрачены миллиарды долларов на конструирование и запуск аппаратов, но большинство этих попыток не принесли результата. Создается впечатление, что некая сила на этой планете упорно не желает иметь контакт с землянами.

Предполагается, что когда-то Марс был населен и богат природными ресурсами, как и Земля, но впоследствии, его магнитное поле ослабело. Это привело к тому, что большая часть атмосферы и влаги улетучились в космос, в результате тело планеты осталось без защиты перед жестким ультрафиолетовым излучением. Не исключено, что жители Марса обладали необходимыми знаниями и смогли переселить на соседнюю планету некоторые виды животных, переселиться сами, либо же отправить капсулу с микроорганизмами.

Поиски первоисточника жизни, будут продолжаться еще очень долго, ведь с каждым новым открытием в науке и особенно генетике, удается лишь слегка приоткрыть завесу тайны о происхождении человечества, что в свою очередь приводит к появлению новых гипотез. Все же, каким бы ни был ответ на этот вопрос, узнать его вряд ли будет суждено, пока человек не научится чувствовать ответственность за свою уникальную планету, на которой ему посчастливилось жить.

No related links found



Безжизненные горы, камни и вода, огромная луна на небе и постоянная бомбардировка метеоритами - наиболее вероятный ландшафт Земли 4 миллиарда лет назад

Жизнь зародилась из неорганической материи в космосе или она возникла именно на Земле? Эта дилемма обязательно встает перед исследователем, заинтересовавшимся проблемой происхождения жизни. Доказать правоту какой-либо из двух существующих ныне гипотез до сих пор никому не удалось, как, впрочем, не удалось придумать и третий путь решения.

Первая гипотеза о происхождении жизни на Земле стара, в ее активе — солидные фигуры европейской науки: Г. Гельмгольц, Л. Пастер, С. Аррениус, В. Вернадский, Ф. Крик. Сложность живой материи, малая вероятность ее самозарождения на планете, а также неудачи экспериментаторов по синтезу живого из неживого приводят ученых в стан приверженцев данного подхода. Существуют многочисленные вариации того, как именно жизнь попала на Землю, и самая известная из них - теория панспермии. Согласно ей жизнь широко распространена в межзвездном пространстве, но поскольку там нет условий для развития, живая материя превращается в спермии, или споры, и таким образом перемещается по космосу. Миллиарды лет назад кометы занесли спермии на Землю, где сложилась благоприятная для их раскрытия среда.

Спермии - это мелкие зародыши, способные выдерживать большие перепады температур, космическое излучение и другие губительные для живого факторы внешней среды. Как предположил английский астроном Ф. Хойл, на роль спермий подходят межзвездные пылевые частицы, среди которых могут быть бактерии в графитовой оболочке. На сегодняшний день спермии в космосе не обнаружены. Но даже если бы они нашлись, столь удивительное открытие только сдвинуло бы проблему возникновения жизни с нашей планеты в другое место. И мы бы не избежали вопросов, откуда на Землю прилетели спермии и как они зародились. Вторая часть дилеммы - как из неорганической материи возникла жизнь - не столь романтична, поскольку опирается на законы физики и химии. Это узкий, механистический подход, именуемый теорией абиогенеза, вбирает в себя усилия многих специалистов. Возможно, из-за своей конкретности данный подход оказался плодотворным и за полстолетия продвинул целые разделы биохимии, эволюционной биологии и космологии.

По мнению ученых, синтез живой клетки - не за горами, это дело техники и вопрос времени. Но будет ли рожденная в пробирке клетка ответом на вопрос, как произошла жизнь на Земле? Вряд ли. Синтетическая клетка докажет лишь то, что абиогенез неким образом возможен. Но 4 миллиарда лет назад на Земле все могло произойти иначе. Например, так. Поверхность Земли остыла 4,5 миллиарда лет назад. Атмосфера была тонкой, и кометы активно бомбардировали Землю, в изобилии доставляя органику. Внеземное вещество оседало в мелких теплых водоемах, подогреваемых вулканами: на дне изливались лавы, росли острова, били горячие источники - фумаролы. Континенты в то время не были такими прочными и большими, как сейчас, они легко перемещались по земной коре, соединялись и распадались.

Луна была ближе, Земля вращалась быстрее, дни были короче, приливные волны выше, а шторма суровее. Над всем этим простирались стального цвета небеса, затемненные пыльными бурями, тучами вулканического пепла и осколками пород, выбитыми ударами метеоритов. Постепенно складывалась атмосфера, богатая азотом, углекислым газом и парами воды. Обилие парниковых газов вызвало потепление климата всей планеты. В таких экстремальных условиях происходил синтез живого вещества. Было ли это чудом, случайностью, произошедшим вопреки эволюции Вселенной, или только так и может появляться жизнь? Уже на ранних этапах проявилась одна из главных черт живой материи - приспособляемость к условиям среды. Ранняя атмосфера содержала мало свободного кислорода, озон был в дефиците, и земля купалась в ультрафиолетовых лучах, смертельных для живого. Так бы осталась планета необитаемой, если бы клетки не изобрели механизм защиты от ультрафиолета. Этот сценарий появления жизни в целом не отличается от предложенного еще Дарвином. Добавились новые детали - что-то узнали, изучая древнейшие горные породы и экспериментируя, о чем-то догадались. Будучи наиболее обоснованным, этот сценарий одновременно и самый спорный. Ученые бьются по каждому пункту, предлагая многочисленные альтернативы. Сомнения возникают с самого начала: откуда взялась первичная органика, произошел ли ее синтез на Земле или она упала с неба?

Революционная идея

Научные основы абиогенеза, или происхождение живого из неживого, заложил русский биохимик А.И. Опарин. В 1924 году, будучи 30-летним ученым, Опарин опубликовал статью «Происхождение жизни», которая, по мнению его коллег, «содержала семена интеллектуальной революции». Публикация книги Опарина на английском языке в 1938 году стала сенсацией и привлекла к проблеме жизни значительные интеллектуальные ресурсы Запада. В 1953 году С. Миллер, аспирант Университета Чикаго, провел успешный опыт по абиогенному синтезу. Он создал условия ранней Земли в лабораторной пробирке и в результате химической реакции получил набор аминокислот. Так, теория Опарина начала получать экспериментальные подтверждения.

Опарин и священник

По воспоминаниям коллег, академик А.И. Опарин был убежденным материалистом и атеистом. Тому подтверждение - его теория абиогенеза, которая, казалось бы, не оставляет надежды на сверхъестественное объяснение загадок жизни. Тем не менее взгляды и личность ученого привлекали к нему людей совершенно противоположных мировоззрений. Занимаясь научной и просветительской работой, участвуя в движении пацифистов, он много выезжал за рубеж. Однажды, где-то в 1950-х годах, Опарин читал лекции в Италии по проблеме происхождения жизни. После доклада ему сказали, что с ним хочет познакомиться не кто иной, как президент Папской академии наук из Ватикана. Александр Иванович, будучи советским человеком и прекрасно зная предвзятое отношение зарубежной интеллигенции к СССР, не ожидал от представителя католической церкви ничего хорошего, наверняка какая-нибудь провокация. Все же знакомство состоялось. Преподобный синьор пожал Опарину руку, поблагодарил за лекцию и воскликнул: «Профессор, я восхищен тем, как прекрасно Вы вскрыли промысел Божий!»

Вероятность возникновения жизни

Теория абиогенеза предполагает, что жизнь зародилась на определенном этапе развития материи. С момента образования Вселенной и первых частиц материя встает на путь постоянных изменений. Сначала возникли атомы и молекулы, потом появились звезды и пыль, из нее - планеты, а на планетах зародилась жизнь. Живое возникает из неживого, повинуясь некоему высшему закону, сущность которого нам пока неизвестна. Жизнь не могла не возникнуть на Земле, где были подходящие условия. Разумеется, опровергнуть сие метафизическое обобщение невозможно, но семена сомнения проросли. Дело в том, что условия, необходимые для синтеза жизни, весьма многочисленны, часто противоречат фактам и друг другу. К примеру, нет доказательств того, что на ранней Земле была восстановительная атмосфера. Неясно, как возник генетический код. Удивляет своей сложностью строение живой клетки и ее функции. Какова вообще вероятность зарождения жизни? Вот несколько примеров.

Белки состоят только из так называемых «левых» аминокислот, то есть асимметричных молекул, которые вращают поляризацию проходящего через них света влево. Почему при строительстве белка используются только левые аминокислоты, неизвестно. Может быть, это произошло случайно и где-то во Вселенной есть живые существа, состоящие из правых аминокислот. Скорее всего, в первичном бульоне, где происходил синтез исходных белков, было поровну левых и правых аминокислот. И только появление реально живой «левой» структуры нарушило эту симметрию и биогенный синтез аминокислот пошел по «левому» пути.

Впечатляет расчет, который Фред Хойл приводит в своей книге «Evolution from Space». Вероятность получения случайным образом 2 000 ферментов клетки, состоящих из 200 аминокислот каждый, равна 10 -4000 - абсурдно малая величина, даже если бы весь космос был органическим супом.

Вероятность синтеза одного белка, состоящего из 300 аминокислот, - один шанс на 2×10 390 . Опять ничтожно мало. Уменьшим число аминокислот в белке до 20, тогда число возможных комбинаций синтеза такого белка составит 1 018 - всего на порядок больше числа секунд в 4,5 миллиарда лет. Нетрудно видеть, что времени на перебор всех вариантов и выбор наилучшего у эволюции просто не было. Если учесть, что аминокислоты в белках соединены в определенные последовательности, а не случайным образом, то вероятность синтеза молекулы белка будет такой же, как если бы мартышка случайно напечатала одну из трагедий Шекспира, то есть почти нулевой.

Ученые рассчитали, что молекула ДНК, участвующая в простейшем цикле кодирования белков, должна была состоять из 600 нуклеотидов в определенной последовательности. Вероятность случайного синтеза такой ДНК равна 10 -400 , иначе говоря, для этого потребуется 10 400 попыток.

Не все ученые согласны с такими подсчетами вероятности. Они указывают, что рассчитывать шансы синтеза белка случайным перебором комбинаций некорректно, так как у молекул есть предпочтения, и одни химические связи всегда более вероятны, чем другие. По мнению австралийского биохимика Яна Мусгрейва, рассчитывать вероятность абиогенеза вообще бессмысленно. Во-первых, образование полимеров из мономеров не случайно, а подчиняется законам физики и химии. Вовторых, рассчитывать образование современных молекул белка, ДНК или РНК неправильно потому, что они не входили в состав первых живых систем. Возможно, в структуре существующих ныне организмов ничего не осталось от прошлых времен. Как сейчас считают, первыми организмами были очень простые системы коротких молекул, состоящих всего из 30-40 мономеров. Жизнь начиналась с очень простых организмов, постепенно усложняя конструкцию. Природа даже не пыталась сразу построить «Боинг-747». В-третьих, не надо бояться малой вероятности. Один шанс на миллион миллионов? И что с того, ведь он может выпасть с первой же попытки.

Что такое жизнь

Поисками определения жизни занимаются не только философы. Такое определение необходимо биохимикам, чтобы понять: а что же получилось в пробирке - живое или неживое? Палеонтологам, изучающим древнейшие горные породы в поисках начала жизни. Экзобиологам, ищущим организмы внеземного происхождения. Дать определение жизни непросто. Говоря словами Большой Советской Энциклопедии, «строго научное разграничение на живые и неживые объекты встречает определенные трудности». Действительно, что характерно только для живого организма? Может быть, набор внешних признаков? Нечто белое, мягкое, двигается, издает звуки. В это примитивное определение не попадают растения, микробы и еще многие организмы, потому что они молчат и не двигаются. Можно рассмотреть жизнь с химической точки зрения как материю, состоящую из сложных органических соединений: аминокислот, белков, жиров. Но тогда и простую механическую смесь этих соединений следует считать живой, что неверно. Более удачное определение, по которому в целом существует научный консенсус, связано с уникальными функциями живых систем.

Способность к размножению, когда потомкам передается точная копия наследственной информации, присуща всей земной жизни, причем даже самой малой ее частице - клетке. Вот почему клетку принимают за единицу измерения жизни. Слагаемые же клетки: белки, аминокислоты, ферменты - взятые по отдельности, живыми не будут. Отсюда следует важный вывод о том, что успешные опыты по синтезу этих веществ нельзя считать ответом на вопрос о происхождении жизни. В этой области произойдет революция, только когда станет ясно, как возникла целая клетка. Без сомнения, первооткрывателям тайны вручат Нобелевскую премию. Помимо функции размножения есть ряд необходимых, но недостаточных свойств системы для того, чтобы называться живой. Живой организм может приспосабливаться к изменению окружающей среды на генетическом уровне. Это очень важно для выживания. Благодаря изменчивости жизнь сохранилась на ранней Земле, во время катастроф и в суровые ледниковые периоды.

Важное свойство живой системы - каталитическая активность, то есть умение проводить только определенные реакции. На этом свойстве основан обмен веществ - выбор из окружающей среды нужных веществ, их переработка и получение энергии, необходимой для дальнейшей жизнедеятельности. Схема обмена веществ, которая представляет собой не что иное, как алгоритм выживания, зашита в генетическом коде клетки и через механизм наследственности передается потомкам. Химикам известно много систем с каталитической активностью, которые, однако, не умеют размножаться, и потому их нельзя считать живыми.

Решающий эксперимент

Нет никакой надежды, что однажды клетка получилась сама собой из атомов химических элементов. Это невероятный вариант. Простая клетка бактерии содержит сотни генов, тысячи белков и разных молекул. Фред Хойл шутил, что синтез клетки так же невероятен, как сборка «Боинга» ураганом, пронесшимся над свалкой запчастей. И все же «Боинг» существует, значит, он был каким-то образом «собран», точнее «самособран». По нынешним представлениям, «самосборка» «Боинга» началась 4,5 миллиарда лет назад, процесс шел постепенно и был растянут во времени на миллиард лет. По крайней мере 3,5 миллиарда лет назад живая клетка уже существовала на Земле.

Для синтеза живого из неживого на начальном этапе в атмосфере и водоемах планеты должны присутствовать простые органические и неорганические соединения: C, C 2 , C 3 , CH, CN, CO, CS, HCN, CH 3 CH, NH, O, OH, H 2 O, S. Стэнли Миллер в своих знаменитых опытах по абиогенному синтезу смешал водород, метан, аммиак и водяные пары, потом пропускал нагретую смесь через электрические разряды и охлаждал. Через неделю в колбе образовалась коричневая жидкость, содержащая семь аминокислот, и в том числе глицин, аланин и аспарагиновую кислоту, входящие в состав клеточных белков. Эксперимент Миллера показал, как могла образоваться предбиологическая органика - вещества, которые участвуют в синтезе более сложных компонентов клетки. С тех пор биологи считают этот вопрос решенным, несмотря на серьезную проблему. Дело в том, что абиогенный синтез аминокислот идет только в восстановительных условиях, вот почему Опарин полагал атмосферу ранней Земли метаново-аммиачной. Но геологи не согласны с таким выводом.

Проблема ранней атмосферы

Метану и аммиаку неоткуда взяться в большом количестве на Земле, считают специалисты. К тому же эти соединения очень неустойчивы и разрушаются под действием солнечного света, метаново-аммиачная атмосфера не могла бы существовать, даже если бы эти газы выделялись из недр планеты. По данным геологов, в атмосфере Земли 4,5 миллиарда лет назад преобладали углекислый газ и азот, что в химическом отношении создает нейтральную среду. Об этом свидетельствует состав древнейших горных пород, которые в тот период были выплавлены из мантии. Самые древние породы на планете возрастом 3,9 миллиарда лет обнаружили в Гренландии. Это так называемые серые гнейсы - сильно измененные магматические породы среднего состава. Изменение этих горных пород шло миллионы лет под влиянием углекислых флюидов мантии, которые одновременно насыщали и атмосферу. В таких условиях абиогенный синтез невозможен.

Проблему ранней атмосферы Земли пытается решить академик Э.М. Галимов, директор Института геохимии и аналитической химии им. В.И. Вернадского РАН. Он рассчитал, что земная кора возникла очень рано, в первые 50-100 миллионов лет после образования планеты, и была по преимуществу металлической. В таком случае мантия действительно должна была выделять метан и аммиак в достаточном количестве для создания восстановительных условий. Американские ученые К. Саган и К. Чайба предложили механизм самозащиты метановой атмосферы от разрушения. По их схеме разложение метана под действием ультрафиолета могло привести к созданию в верхних слоях атмосферы аэрозоля из частиц органики. Эти частицы поглощали солнечную радиацию и защищали восстановительную среду планеты. Правда, этот механизм разработали для Марса, но он применим и к ранней Земле.

Подходящие условия для образования предбиологической органики не сохранялись на Земле долго. В течение следующих 200-300 миллионов лет мантия начала окисляться, что привело к выделению из нее углекислого газа и смене состава атмосферы. Но к тому времени среда для зарождения жизни уже была подготовлена.

На дне морском

Первожизнь могла зародиться вокруг вулканов. Представьте себе на еще хрупком дне океанов многочисленные разломы и трещины, сочащиеся магмой и бурлящие газами. В таких зонах, насыщенных парами сероводорода, образуются месторождения сульфидов металлов: железа, цинка, меди. Что если синтез первичной органики шел прямо на поверхности железо-серных минералов с помощью реакции углекислоты и водорода? Благо вокруг много и того и другого: диоксид и оксид углерода выделяются из магмы, а водород - из воды при ее химическом взаимодействии с горячей магмой. Есть и необходимый для синтеза приток энергии.

Эта гипотеза не противоречит геологическим данным и основана на предположении, что ранние организмы жили в экстремальных условиях, как современные хемосинтетические бактерии. В 60-х годах XX века исследователи открыли на дне Тихого океана подводные вулканы - черные курильщики. Там в клубах ядовитых газов, без доступа солнечного света и кислорода, при температуре +120° существуют колонии микроорганизмов. Подобные черным курильщикам условия были на Земле уже 2,5 миллиарда лет назад, как о том свидетельствуют пласты строматолитов - следов жизнедеятельности синезеленых водорослей. Формы, похожие на этих микробов, есть и среди остатков древнейших организмов возрастом 3,5 миллиарда лет.

Для подтверждения вулканической гипотезы нужен эксперимент, который показал бы, что абиогенный синтез в данных условиях возможен. Работы в этом направлении ведут группы биохимиков из США, Германии, Англии и России, но пока безуспешно. Обнадеживающие результаты получил в 2003 году молодой исследователь Михаил Владимиров из лаборатории эволюционной биохимии Института биохимии им. А.Н. Баха РАН. Он создал в лаборатории искусственный черный курильщик: в автоклав, наполненный солевым раствором, был помещен диск из пирита (FeS 2), служивший катодом; через систему проходили углекислый газ и электрический ток. Через сутки в автоклаве появилась муравьиная кислота - простейшая органика, которая участвует в метаболизме живых клеток и служит материалом для абиогенного синтеза более сложных биологических веществ.


Цианобактерии, способные усваивать атмосферный азот

Охотники за обитаемыми планетами

Обе теории происхождения жизни, и панспермия и абиогенез, допускают, что жизнь не уникальное явление во Вселенной, она должна быть на других планетах. Но как ее обнаружить? Долгое время существовал единственный метод поиска жизни, который пока не дал положительных результатов, - по радиосигналам от инопланетян. В конце XX столетия возникла новая идея - с помощью телескопов искать планеты вне Солнечной системы. Началась охота за экзопланетами. В 1995 году поймали первый экземпляр: планету массой в пол-Юпитера, быстро вращающуюся вокруг 51-й звезды созвездия Пегас. В результате почти 10-летних поисков обнаружили 118 планетных систем, содержащих 141 планету. Ни одна из этих систем не похожа на Солнечную, ни одна из планет - на Землю. Найденные экзопланеты близки по массе к Юпитеру, то есть они гораздо больше Земли. Далекие гиганты непригодны для жизни в силу особенностей своих орбит. Часть из них вращается очень близко к своей звезде, значит, их поверхности раскалены и нет жидкой воды, в которой развивается жизнь. Остальные планеты - их меньшинство - перемещаются по вытянутой эллиптической орбите, что драматично влияет на климат: смена сезонов там должна быть очень резкой, а это губительно для организмов.

Обе теории происхождения жизни, и панспермия и абиогенез, допускают, что жизнь не уникальное явление во Вселенной, она должна быть на других планетах. Но как ее обнаружить? Долгое время существовал единственный метод поиска жизни, который пока не дал положительных результатов, - по радиосигналам от инопланетян. В конце XX столетия возникла новая идея - с помощью телескопов искать планеты вне Солнечной системы. Началась охота за экзопланетами. В 1995 году поймали первый экземпляр: планету массой в пол-Юпитера, быстро вращающуюся вокруг 51-й звезды созвездия Пегас. В результате почти 10-летних поисков обнаружили 118 планетных систем, содержащих 141 планету. Ни одна из этих систем не похожа на Солнечную, ни одна из планет - на Землю. Найденные экзопланеты близки по массе к Юпитеру, то есть они гораздо больше Земли. Далекие гиганты непригодны для жизни в силу особенностей своих орбит. Часть из них вращается очень близко к своей звезде, значит, их поверхности раскалены и нет жидкой воды, в которой развивается жизнь. Остальные планеты - их меньшинство - перемещаются по вытянутой эллиптической орбите, что драматично влияет на климат: смена сезонов там должна быть очень резкой, а это губительно для организмов.

Тот факт, что ни одной планетной системы типа Солнечной не обнаружили, вызвал пессимистические заявления некоторых ученых. Возможно, небольшие каменные планеты очень редки во Вселенной или наша Земля вообще единственная в своем роде, а возможно, нам просто не хватает точности измерений. Но надежда умирает последней, и астрономы продолжают оттачивать свои методы. Сейчас планеты ищут не прямым наблюдением, а по косвенным признакам, потому что не хватает разрешения телескопов. Так, положение юпитероподобных гигантов вычисляют по гравитационному возмущению, которое они оказывают на орбиты своих звезд. В 2006 году Европейское космическое агентство запустит спутник «Корот», который будет искать планеты земной массы, за счет уменьшения блеска звезды во время их прохождения по ее диску. Тем же способом охотиться за планетами будет спутник NASA «Кеплер», начиная с 2007 года. Еще через 2 года NASA организует миссию космической интерферометрии - очень чувствительный метод обнаружения маленьких планет по их воздействию на тела большей массы. Лишь к 2015 году ученые построят приборы для прямого наблюдения - это будет целая флотилия космических телескопов под названием «Охотник за планетами земного типа», способная одновременно искать признаки жизни.

Когда обнаружат подобные Земле планеты, в науке наступит новая эпоха, и ученые готовятся к этому событию уже сейчас. С огромного расстояния нужно суметь распознать в атмосфере планеты следы жизни, пусть даже самых примитивных ее форм - бактерий или простейших многоклеточных. Вероятность обнаружить примитивную жизнь во Вселенной выше, чем вступить в контакт с зелеными человечками, ведь на Земле жизнь существует более 4 миллиардов лет, из них на развитую цивилизацию приходится лишь одно столетие. До появления техногенных сигналов узнать о нашем существовании можно было только по наличию в атмосфере особых соединений - биомаркеров. Главный биомаркер - это озон, который указывает на присутствие кислорода. Пары воды означают наличие жидкой воды. Углекислый газ и метан выделяют некоторые виды организмов. Искать биомаркеры на далеких планетах поручат миссии «Дарвин», которую европейские ученые запустят в 2015 году. Шесть инфракрасных телескопов будут кружиться по орбите в 1,5 миллиона километров от Земли и обследовать несколько тысяч ближайших планетных систем. По количеству кислорода в атмосфере проект «Дарвин» способен определить совсем молодую жизнь, возрастом несколько сот миллионов лет.

Если в излучении атмосферы планеты есть спектральные линии трех веществ - озона, паров воды и метана - это дополнительное свидетельство в пользу наличия жизни. Следующий шаг - установить ее тип и степень ее развития. К примеру, присутствие молекул хлорофилла будет означать, что на планете есть бактерии и растения, которые используют фотосинтез для получения энергии. Разработка биомаркеров следующего поколения очень перспективная задача, но это еще далекое будущее.

Источник органики

Если на Земле не было условий для синтеза предбиологической органики, то они могли быть в космосе. Еще в 1961 году американский биохимик Джон Оро опубликовал статью о кометном происхождении органических молекул. Молодая Земля, не защищенная плотной атмосферой, подвергалась массированным бомбардировкам кометами, которые состоят в основном изо льда, но также содержат аммиак, формальдегид, цианид водорода, цианоацетилен, аденин и другие соединения, необходимые для абиогенного синтеза аминокислот, нуклеиновых и жирных кислот - основных компонентов клетки. По подсчетам астрономов, на поверхность Земли выпало 1 021 кг кометного вещества. Вода комет образовала океаны, где через сотни миллионов лет расцвела жизнь.

Наблюдения подтверждают, что в космических телах и межзвездных пылевых облаках есть простая органика и даже аминокислоты. Спектральный анализ показал наличие аденина и пурина в хвосте кометы Хейли-Боппа, а в метеорите Мерчисон нашли пиримидин. Образование этих соединений в условиях космоса не противоречит законам физики и химии.

Кометная гипотеза популярна среди космологов еще и тем, что она объясняет появление жизни на Земле после образования Луны. Как принято считать, примерно 4,5 миллиарда лет назад Земля столкнулась с огромным космическим телом. Ее поверхность расплавилась, часть вещества выплеснулась на орбиту, где из него образовался небольшой спутник - Луна. После такой катастрофы на планете не должно было остаться никакой органики и воды. Откуда же они появились? Их снова принесли кометы.

Проблема полимеров

Клеточные белки, ДНК, РНК - все это полимеры, очень длинные молекулы, наподобие нитей. Строение полимеров довольно простое, они состоят из частей, повторяющихся в определенном порядке. К примеру, целлюлоза - самая распространенная молекула в мире, которая входит в состав растений. Одна молекула целлюлозы состоит из десятков тысяч атомов углерода, водорода и кислорода, но вместе с тем это не что иное, как многократное повторение более коротких молекул глюкозы, сцепленных между собой, как в ожерелье. Белки - это цепь аминокислот. ДНК и РНК - последовательность нуклеотидов. Причем суммарно это очень длинные последовательности. Так, расшифрованный геном человека состоит из 3 миллиардов пар нуклеотидов.

В клетке полимеры производятся постоянно с помощью сложных матричных химических реакций. Чтобы получить белок, у одной аминокислоты нужно отсоединить гидроксильную группу OH с одного конца и атом водорода с другого, и только после этого «приклеить» следующую аминокислоту. Нетрудно видеть, что в этом процессе образуется вода, причем снова и снова. Освобождение от воды, дегидратация, - очень древний процесс, ключевой для зарождения жизни. Как он происходил, когда еще не было клетки с ее фабрикой по производству белков? Возникает проблема и с теплым мелким прудом - колыбелью живых систем. Ведь при полимеризации вода должна удаляться, но это невозможно, если ее полно вокруг.

Глиняный ген

В первичном бульоне должно было находиться нечто, что помогло родиться живой системе, ускорило процесс и снабдило энергией. Английский кристаллограф Джон Бернал в 50-х годах XX века предположил, что таким помощником могла служить обычная глина, которой в изобилии устлано дно любого водоема. Минералы глины способствовали образованию биополимеров и возникновению механизма наследственности. Гипотеза Бернала с годами окрепла и привлекла много последователей. Оказалось, что облученные ультрафиолетом глинистые частицы хранят полученный запас энергии, который расходуют на реакцию сборки биополимеров. В присутствии глины мономеры собираются в самореплицирующиеся молекулы, нечто вроде РНК.

Большинство глинистых минералов похоже по своей структуре на полимеры. Они состоят из огромного числа слоев, соединенных между собой слабыми химическими связями. Такая минеральная лента растет сама собой, каждый следующий слой повторяет предыдущий, а иногда случаются дефекты - мутации, как в настоящих генах. Шотландский химик А.Дж. Кернс-Смит утверждал, что первым организмом на Земле был именно «глиняный ген». Попадая между слоями глинистых частиц, органические молекулы взаимодействовали с ними, перенимали способ хранения информации и роста, можно сказать, обучались. Какое-то время минералы и протожизнь мирно сосуществовали, но вскоре произошел разрыв, или генетический захват, по Кернс-Смиту, после чего жизнь покинула минеральный дом и начала свое собственное развитие.

Самые древние микробы

В черных сланцах Западной Австралии возрастом 3,5 миллиарда лет сохранились остатки самых древних организмов, когда-либо обнаруженных на Земле. Видимые лишь под микроскопом шарики и волоконца принадлежат прокариотам - микробам, в клетке которых еще нет ядра и спираль ДНК уложена прямо в цитоплазме. Древнейшие окаменолости обнаружил в 1993 году американский палеобиолог Уильям Шопф. Вулканические и осадочные породы комплекса Пилбара, что к западу от Большой песчаной пустыни в Австралии - одни из самых старых пород на Земле. По счастливой случайности эти образования не столь сильно изменились под действием мощных геологических процессов и сохранили в прослоях остатки ранних существ.

Убедиться в том, что крохотные шарики и волоконца в прошлом были живыми организмами, оказалось трудно. Ряд мелких бусинок в горной породе может быть чем угодно: минералами, небиологической органикой, обманом зрения. Всего Шопф насчитал 11 видов окаменолостей, относящихся к прокариотам. Из них 6, по мнению ученого, - это цианобактерии, или синезеленые водоросли. Подобные виды до сих пор существуют на Земле в пресных водоемах и океанах, в горячих ключах и близ вулканов. Шопф насчитал шесть признаков, по которым подозрительные объекты в черных сланцах следует считать живыми.

Вот эти признаки:
1. Ископаемые сложены органической материей
2. У них сложное строение - волоконца состоят из клеток разной формы: цилиндров, коробочек, дисков
3. Объектов много - всего 200 ископаемых включают в себя 1 900 клеток
4. Объекты похожи друг на друга, как современные представители одной популяции
5. Это были организмы, хорошо приспособленные к условиям ранней Земли. Они обитали на дне моря, защищенные от ультрафиолета толстым слоем воды и слизи
6. Объекты размножались как современные бактерии, о чем говорят находки клеток в стадии деления.

Обнаружение столь древних цианобактерий означает, что почти 3,5 миллиарда лет назад существовали организмы, которые потребляли углекислый газ и производили кислород, умели скрываться от солнечной радиации и восстанавливаться после ранений, как это делают современные виды. Биосфера уже начала складываться. Для науки в этом кроется пикантный момент. Как признается Уильям Шопф, в столь почтенных породах он бы предпочел найти более примитивные создания. Ведь находка древнейших цианобактерий отодвигает начало жизни на период, стертый из геологической истории навсегда, вряд ли геологи когда-либо смогут его обнаружить и прочесть. Чем старше породы, тем дольше они пребывали под давлением, температурой, выветривались. Помимо Западной Австралии на планете сохранилось только одно место с очень древними породами, где могут встретиться окаменолости - на востоке Южной Африки в королевстве Свазиленд. Но африканские породы за миллиарды лет претерпели сильнейшие изменения, и следы древних организмов потерялись.

В настоящее время геологи не нашли начала жизни в горных породах Земли. Строго говоря, они вообще не могут назвать интервал времени, когда живых организмов еще не было. Не могут они и проследить ранние - до 3,5 миллиарда лет назад - этапы эволюции живого. Во многом из-за отсутствия геологических свидетельств тайна происхождения жизни остается нераскрытой.

Реалист и сюрреалист

Первая конференция Международного общества по изучению происхождения жизни (ISSOL) состоялась в 1973 году в Барселоне. Эмблему к этой конференции нарисовал Сальвадор Дали. Дело было так. Джон Оро, американский биохимик, был дружен с художником. В 1973 году они встретились в Париже, отобедали у «Максима» и отправились на лекцию по голографии. После лекции Дали неожиданно предложил ученому зайти на другой день к нему в отель. Оро пришел, и Дали вручил ему рисунок, символизирующий проблему хиральности в живых системах. Два кристалла растут из сочащейся лужи в виде перевернутых песочных часов, что намекает на конечное время эволюции. Слева сидит женская фигура, справа стоит мужчина и держит крыло бабочки, между кристаллами вьется червячок ДНК. Изображенные на рисунке левый и правый кристаллы кварца взяты из книги Опарина «Происхождение жизни на Земле» 1957 года. К удивлению ученого, Дали хранил эту книгу у себя в номере! После конференции супруги Опарины поехали в гости к Дали, на берег Каталонии. Обе знаменитости умирали от желания пообщаться. Между реалистом и сюрреалистом завязалась длинная беседа, оживленная языком мимики и жестов - ведь Опарин говорил только по-русски.

Мир РНК

В теории абиогенеза поиски первоначала жизни приводят к идее о более простой, нежели клетка, системе. Современная клетка необычайно сложна, ее работа держится на трех китах: ДНК, РНК и белки. ДНК хранит наследственную информацию, белки осуществляют химические реакции по схеме, заложенной в ДНК, информацию от ДНК к белкам передает РНК. Что может входить в упрощенную систему? Какая-то одна из составных частей клетки, которая умеет, как минимум, воспроизводить себя и регулировать обмен веществ.

Поиски наиболее древней молекулы, с которой, собственно, и началась жизнь, продолжаются почти столетие. Подобно геологам, восстанавливающим историю Земли по пластам горных пород, биологи открывают эволюцию жизни по строению клетки. Череда открытий XX века привела к гипотезе спонтанно зародившегося гена, который стал прародителем жизни. Естественно думать, что таким первогеном могла быть молекула ДНК, ведь она хранит информацию о своей структуре и об изменениях в ней. Постепенно выяснили, что ДНК не может сама передать информацию другим поколениям, для этого ей нужны помощники - РНК и белки. Когда во второй половине XX века открыли новые свойства РНК, то оказалось, что эта молекула больше подходит на главную роль в пьесе о происхождении жизни.

Молекула РНК проще по своему строению, чем ДНК. Она короче и состоит из одной нити. Эта молекула может служить катализатором, то есть проводить избирательные химические реакции, например соединять между собой аминокислоты, и в частности осуществлять собственную репликацию, то есть воспроизведение. Как известно, избирательная каталитическая активность - одно из основных свойств, присущих живым системам. В современных клетках эту функцию выполняют только белки. Возможно, эта способность перешла к ним со временем, а когда-то этим занималась РНК.

Чтобы выяснить, на что еще способна РНК, ученые стали разводить ее искусственно. В насыщенном молекулами РНК растворе кипит собственная жизнь. Обитатели обмениваются частями и воспроизводят сами себя, то есть идет передача информации потомкам. Спонтанный отбор молекул в такой колонии напоминает естественный отбор, а значит, им можно управлять. Как селекционеры выращивают новые породы животных, так же стали выращивать РНК с заданными свойствами. Например, молекулы, которые помогают сшивать нуклеотиды в длинные цепочки; молекулы, устойчивые к высокой температуре, и так далее.

Колонии молекул в чашках Петри - это и есть мир РНК, только искусственный. Натуральный мир РНК мог возникнуть 4 миллиарда лет назад в теплых лужах и мелких озерцах, где шло спонтанное размножение молекул. Постепенно молекулы стали собираться в сообщества и соревноваться между собой за место под солнцем, выживали наиболее приспособленные. Правда, передача информации в таких колониях происходит неточно, и вновь приобретенные признаки отдельной «особи» могут теряться, но этот недостаток покрывается большим количеством комбинаций. Отбор РНК шел очень быстро, и за полмиллиарда лет могла возникнуть клетка. Дав толчок возникновению жизни, мир РНК не исчез, он продолжает существовать внутри всех организмов на Земле.

Мир РНК - почти живой, до полного оживления ему остается всего один шаг - произвести клетку. Клетка отделена от окружающей среды прочной мембраной, значит, следующий этап эволюции мира РНК - заключение колоний, где молекулы связаны между собой родством, в жировую оболочку. Такая протоклетка могла получиться случайно, но, чтобы стать полноценной живой клеткой, мембрана должна была воспроизводиться от поколения к поколению. С помощью искусственного отбора в колонии можно вывести РНК, которая отвечает за рост мембраны, но произошло ли это на самом деле? Авторы экспериментов из Массачусетсского технологического института США подчеркивают, что результаты, полученные в лаборатории, не обязательно будут похожи на реальную сборку живой клетки, а может быть, и вовсе далеки от истины. Впрочем, создать живую клетку в пробирке пока не удалось. Мир РНК не раскрыл до конца своих тайн.