Из-за огромного разнообразия органических веществ (более 27 миллионов) реакции между ними происходят также разнообразно. Если добавить еще реакции с представителями неорганической химии (оксиды, соли, кислоты и т.д.), то голова вообще может пойти кругом и уследить за всем многообразием действительно невозможно. Огромное количество реакций носят именной характер, в честь ученых, которые их открыли. Поэтому в данной публикации будут приведены те основные принципы реакционной способности органических веществ, которые известны науке на данный момент.

Химические свойства атомов и молекул, выражающиеся в их способности вступать во взаимодействие друг с другом, обусловлены состоянием имеющихся в них электронов. В более простых случаях главную роль в химическом взаимодействии играют валентные электроны внешних оболочек реагирующих атомов.

Химические реакции в первом приближении можно охарактеризовать как процессы, при которых происходит перераспределение электронов внешних оболочек. Направление реакции существенно зависит от распределения электронов в реагирующих молекулах. Совокупность факторов, управляющих распределением электронной плотности и возможностью образования новой, более стабильной системы, обладающей минимальной потенциальной энергией, в конечном счете обусловливает протекание химической реакции, является ее движущей силой .

С точки зрения производства одной из самых значимых реакций будет реакция горения. Она применяется в энергетике, уничтожении токсичных отходов и т.д. Взгляд научного мира притягивают реакции превращения одних органических соединений в другие. В молекуле органического вещества всегда найдется участок органической цепи, способный на реакцию. Такие атомы называются реакционными центрами. Так как органические вещества зачастую имеют несколько реакционных центров, которые имеют различную активность, то и реакций происходит несколько, с разными скоростями и разными конечными продуктами. Самая быстрая реакция называется главной, остальные – побочными. В связи с этим можно даже регулировать реакции, которые происходят, для получения необходимых конечных продуктов. Это делают с помощью катализаторов, которые уже давно являются не только ускорителями процессов, но и их регуляторами.

Известно огромное число различных превращений органических соединений, с помощью которых химики могут получать практически любые вещества заданного строения. Ориентироваться во множестве органических реакций помогает их классификация. В этом разделе излагается основа классификации превращений органических веществ.

Все реакции в органической химии классифицируются следующим образом:

По характеру превращения субстрата

Исходные соединения в органических реакциях называют реагентами , а образующиеся соединения — продуктами . В этом уравнении R-X и Y -реагенты, a R-Y и X — продукты. Для удобства один из реагентов принято называть субстратом , а другой — атакующим реагентом .

Группу X в субстрате R-X принято называть уходящей группой, а группу Y — вступающей группой. Как правило, субстрат имеет более сложное строение, атакующий реагент часто имеет неорганическую природу. Например, в реакции метана с хлором


метан является субстратом, а хлор — атакующим реагентом.

Символами над стрелкой (под стрелкой) обозначают условия , требуемые для проведения реакции; в этой реакции такими условиями являются УФ-облучение и нагревание.

Реакции замещения обозначают латинской буквой S (от англ., «substitution» — замещение).

Реакции замещения атома водорода часто называют по вступающей функциональной группе. Эту реакцию называют, например, реакцией хлорирования (Н → Сl, т. е. атом водорода замещается на атом хлора).

Другим примером реакции замещения водорода можно назвать реакцию нитрования бензола (Η → NO 2 ,т.е атом водорода замещается на нитрогруппу).

Замещению могут подвергаться не только атомы водорода, но и различные функциональные группы, ранее введенные в молекулы углеводородов. Например, замещение Сl → ОН:

Здесь, Сl — уходящая группа, ОН — вступающая группа.

Например, изомеризация 1-хлорпропана в 2-хлорпропан наблюдается в присутствии хлорида алюминия:

По типу активирования

Некаталитическими являются реакции, которые не требуют присутствия катализатора. Эти реакции ускоряются только при повышении температуры, и их иногда называют термическими. Такой способ активирования обозначают значком .

К некаталитическим реакциям можно отнести некоторые уже рассмотренные реакции, такие как нитрование бензола и гидробромирование этилена. Исходными реагентами в этих реакциях служат высокополярные или заряженные частицы.

Каталитическими называют реакции, протекание которых требует присутствия катализатора. Если в качестве катализатора выступает кислота, речь идет о кислотном катализе. К кислотно-катализируемым относят, например, реакции дегидратации изопропанола в присутствии серной кислоты и изомеризации хлорпропана. Если в качестве катализатора выступает основание, речь идет об основном катализе.

Фотохимические реакции — реакции, которые активируют облучением; такой способ активирования обозначают . К числу фотохимически активируемых реакций относится реакция хлорирования метана. Фотохимически активируют также и реакцию димеризации этилена:

Важно отметить, что эта реакция не протекает в темноте даже при значительном нагревании.

По характеру разрыва связей

  • Радикальные реакции

Радикальные реакции сопровождаются гомолитическим разрывом связей и образованием радикалов — нейтральных частиц, содержащих один или несколько неспаренных электронов.


Радикальные реакции особенно распространены в превращениях алканов. Например, в реакции хлорирования метана

атом хлора выступает в роли радикального реагента , а реакция в целом протекает как реакция радикального замещения и обозначается S R .

  • Ионные реакции

Ионные реакции протекают с участием ионов и, как правило, сопровождаются гетеролитическим разрывом связей в субстрате.

Заряженную частицу, имеющую вакантную р-орбиталь на атоме углерода, называют карбкатионом .

Заряженную частицу, содержащую неподеленную электронную пару (НЭП) на атоме углерода, называют карбанионом .

Ионные реакции чаще других встречаются среди превращений органических соединений. Простейшим примером гетеролитического разрыва ковалентной связи может служить реакция диссоциации карбоновой кислоты .

К ионной реакции относится выше рассмотренная реакция гидролиза хлорметана :

В этой реакции реагент, имеющий отрицательный заряд, отдает свою пару электронов для образования связи с субстратом. Аналогичная реакция протекает при действии аммиака на этилбромид.

В этой реакции атакующим реагентом является нейтральная молекула аммиака, которая отдает свою электронную пару для образования связи с субстратом. Реагенты, которые в ходе реакции отдают свою электронную пару для образования связи с субстратом, называют нуклеофильными реагентами , или нуклеофилами .

Нуклеофилами могут быть, как правило, отрицательно заряженные ионы: гидроксид-ион OH — , алкоксид-ион OR — , алкилтио-ион RS — , алкилкарбокси-ион RCOO — , галоген-ион Hal — , цианид-ион CN — , гидрид-ион H —

Реакция гидробромирования этилена также начинается с присоединения положительно заряженной частицы — протона — за счет пары π-электронов субстрата.

Положительно заряженные реагенты, которые в ходе реакции принимают электронную пару для образования ковалентной связи с субстратом, называют электрофильными реагентами , или электрофилами .

Электрофилами могут быть :а) положительные ионы: H + , Br + , NO 2 + , R + и др.

б) нейтральные молекулы, имеющие полярные связи, а, следовательно, атомы, несущие частичный положительный заряд и способные образовывать связь за счет пары электронов субстрата.

Определение характера реагента — радикальный, нуклеофильный и электрофильный — позволяет уточнить классификацию органических реакций по типу превращения субстрата .

Реакции замещения, в которых уходящая группа в субстрате замещается под действием нуклеофильных реагентов, называют реакциями нуклеофильного замещения . Реакции гидролиза хлорметана и аммиака с этилбромидом являются таковыми и обозначаются как реакции S N -типа .

Реакции замещения, протекающие с участием электрофильных реагентов, называют реакциями электрофильного замещения и обозначают S E . К такой реакции можно отнести нитрование бензола .

Таким образом, классификацию органических реакций по типу превращения субстрата, а также обозначения этих реакций, можно представить в виде таблицы.

Submit Rating
Реагент Тип превращения Обозначение
Радикал

Тема урока: Типы химических реакций в органической химии.

Тип урока: урок изучения и первичного закрепления нового материала.

Цели урока: создать условия для формирования знаний об особенностях протекания химических реакций с участием органических веществ при знакомстве с их классификацией, закрепить умения писать уравнения реакций.

Задачи урока :

Обучающие: изучить типы реакций в органической химии, основываясь на знания обучающихся о типах реакций в неорганической химии и их сравнении с типами реакций в органической.

Развивающие: способствовать развитию логического мышления и интеллектуальных умений (анализировать, сравнивать, устанавливать причинно-следственные связи).

Воспитательные: продолжить формирование культуры умственного труда; коммуникационных навыков: прислушиваться к чужому мнению, доказывать свою точку зрения, находить компромиссы.

Методы обучения: словесные (рассказ, объяснение, проблемное изложение); наглядные (мультимедийное наглядное пособие); эвристические (письменные и устные упражнения, решение задач, тестовые задания).

Средства обучения: реализация внутри- и межпредметных связей, мультимедийное наглядное пособие (презентация), символико-графическая таблица.

Технологии: элементы педагогики сотрудничества, личностно-ориентированного обучения (компетентностно-ориентированное обучение, гуманно-личностная технология, индивидуальный и дифференцированный подход), информационно-коммуникативной технологии, здоровьесберегающих образовательных технологий (организационно-педагогическая технология).

Краткое описание хода урока.

I. Организационный этап: взаимные приветствия педагога и учащихся; проверка подготовленности учащихся к уроку; организация внимания и настрой на урок.

Проверка выполнения домашнего задания. Вопросы для проверки:1.Закончить предложения: а) Изомеры – это… б) Функциональная группа – это … 2. Распределить по классам указанные формулы веществ (формулы предлагаются на карточках) и назовите классы соединений, к которым они относятся. 3. Составьте возможные сокращённые структурные формулы изомеров, отвечающих молекулярным формулам (например: С 6 Н 14 , С 3 Н 6 О)

Сообщение темы и задач изучения нового материала; показ его практической значимости.

II. Изучение нового материала:

Актуализация знаний. (Рассказ педагога опирается на схемы слайдов, которые обучающиеся переносят в тетради в качестве опорного конспекта)

Химические реакции – основной объект науки химия. (Слайд 2)

В процессе химических реакций осуществляется превращение одних веществ в другие.

Реагент 1 + Реагент 2 = Продукты (неорганическая химия)

Субстрат + Атакующий реагент = Продукты (органическая химия)

Во многих органических реакциях изменению подвергаются не все молекулы, а их реакционные части (функциональные группы, их отдельные атомы и др.), которые называются реакционными центрами. Субстратом служит то вещество, в котором у атома углерода происходит разрыв старой и образование новой связи, а действующее на него соединение или его реакционную частицу называют реагентом.

Неорганические реакции классифицируют по нескольким признакам: по числу и составу исходных веществ и продуктов (соединения, разложения, замещения, обмена), по тепловому эффекту (экзо- и эндотермические), по изменению степени окисления атомов, по обратимости процесса, по фазе (гомо- и гетерогенные), по использованию катализатора (каталитические и некаталитические). (Слайды 3,4)

Итогом этапа урока является выполнение обучающимися задания (слайд 5), позволяющего проверить навыки в написании уравнений химических реакций, расстановке стехиометрических коэффициентов, классификации неорганических реакций. (Задания предлагаются разноуровневые)

(Упражнение «мозговой» гимнастики на развитие познавательно-психических процессов – «Сова»: улучшает зрительную память, внимание и снимает напряжение, которое развивается при длительном сидении.) Ухватитесь правой рукой за левое плечо и сожмите его, повернитесь влево так, чтобы смотреть назад, дышите глубоко и разведите плечи назад. Теперь посмотрев через другое плечо, уроните подбородок на грудь и глубоко дышите, давая мышцам расслабиться .

Изложение нового материала. (Во время изложения материала обучающиеся в тетрадях делают записи, на которых педагог акцентирует внимание – информация слайдов)

Реакции с участием органических соединений подчиняются тем же законам (закон сохранения массы и энергии, закон действия масс, закон Гесса и др.) и проявляют те же закономерности (стехиометрические, энергетические, кинетические), что и реакции неорганических веществ. (Слайд 6)

Органические реакции принято классифицировать по механизмам протекания, по направлению и конечным продуктам реакции. (Слайд 7)

Способ разрыва ковалентных связей определяют тип механизма реакций. Под механизмом реакции понимают последовательность стадий протекания реакции с указанием промежуточных частиц, образующихся на каждой из этих стадий. (Механизм реакции описывает её путь, т.е. последовательность элементарных актов взаимодействия реагентов, через которые она протекает.)

В органической химии выделяют два основных типа механизма реакций: радикальный (гомолитический) и ионный (гетеролитический). (Слайд 8)

При гомолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гомолитического разрыва образуются свободные радикалы:

X:Y → X . + . Y

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

В результате гетеролитического разрыва связи получаются заряженные частицы: нуклеофильная и электрофильная.

X:Y → X + + :Y -

Нуклеофильная частица (нуклеофил) - это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

Электрофильная частица (электрофил) - это частица, имеющая свободную орбиталь на внешнем электронном уровне. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той частицы, с которой он взаимодействует.

Радикальные реакции имеют характерный цепной механизм протекания, который включает три стадии: зарождения (инициирование), развитие (рост) и обрыв цепи. (Слайд 9)

Ионные реакции происходят без разрыва электронных пар, образующих химические связи: оба электрона переходят на орбиталь одного из атомов продукта реакции с образованием аниона. (Слайд 10) Гетеролитический распад ковалентной полярной связи приводит к образованию нуклеофилов (анионов) и электрофилов (катионов). В зависимости от природы атакующего реагента реакции могут быть нуклеофильными и электрофильными.

По направлению и конечному результату химического превращения органические реакции делят на следующие типы: замещения, присоединения, отщепления (элиминирования), перегруппировки (изомеризации), окисления и восстановления. (Слайд 11)

Под замещением понимают замену атома или группы атомов на другой атом или группу атомов. В результате реакции замещения образуются два разных продукта.

R-CH 2 X + Y→ R-CH 2 Y + X

Под реакцией присоединения понимают введение атома или группы атомов в молекулу непредельного соединения, что сопровождается разрывом в этом соединении π-связей. В ходе взаимодействия двойные связи превращаются в одинарные, а тройные – в двойные или одинарные.

R-CH=CH 2 + XY→ RCHX-CH 2 Y

Проблема: К какому типу реакций мы можем отнести реакцию полимеризации? Докажите её принадлежность к определённому типу реакций и приведите пример.

К реакциям присоединения относятся и реакции полимеризации (например: получение полиэтилена из этилена).

n(СН 2 =СН 2 ) → (-CH 2 -СН 2 -) n

Реакции элиминирования, или отщепления, - это реакции, в ходе которых происходит отщепление атомов или их групп от органической молекулы с образованием кратной связи.

R-CHX-CH 2 Y→ R-CH=CH 2 + XY

Реакции перегруппировки (изомеризации). В этом типе реакций имеет место перегруппировка атомов и их групп в молекуле.

Реакции поликонденсации относятся к реакциям замещения, но их часто выделяют как особый тип органических реакций, имеющих специфику и большое практическое значение.

Реакции окисления- восстановления сопровождаются изменением степени окисления атома углерода в соединениях, где атом углерода – реакционный центр.

Окисление - реакция, при которой под действием окисляющего реагента вещество соединяется с кислородом (либо другим электроотрицательным элементом, например, галогеном) или теряет водород (в виде воды или молекулярного водорода). Действие окисляющего реагента (окисление) обозначается в схеме реакции символом [О].

[O]

CH 3 CHO → CH 3 COOH

Восстановление - реакция, обратная окислению. Под действием восстанавливающего реагента соединение принимает атомы водорода или теряет атомы кислорода: действие восстанавливающего реагента (восстановление) обозначается символом [Н].

[H]

CH 3 COCH 3 → CH 3 CH(OH)CH 3

Гидрирование - реакция, представляющая собой частный случай восстановления. Водород присоединяется к кратной связи или ароматическому ядру в присутствии катализатора.

Для закрепления изученного материала обучающиеся выполняют тестовое задание: слайды 12,13.

III. Домашнее задание: § 8 (упр. 2), 9

IV. Подведение итогов

Выводы: (Слайд 14)

Органические реакции подчиняются общим законам (закону сохранения массы и энергии) и общим закономерностям их протекания (энергетическим, кинетическим – раскрывающим влияние различных факторов на скорость реакции).

Они имеют общие для всех реакций признаки, но имеют и свои характерные особенности.

По механизму протекания реакции делятся на гомолитические (свободнорадикальные) и гетеролитические (электрофильно-нуклеофильные).

По направлению и конечному результату химического превращения различают реакции: замещения, присоединения, отщепления (элиминирования), перегруппировки (изомеризации), поликонденсации, окисления и восстановления.

Используемая литература: УМК: О.С. Габриелян и др. Химия 10 М. Дрофа 2013

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Типы химических реакций в органической химии.

Химическая реакция – превращение одних веществ в другие. Вещества, полученные в результате реакции, отличаются от исходных веществ составом, строением и свойствами. Реагент 1 + Реагент 2 = Продукты Субстрат + Атакующий = Продукты реагент

Признаки классификации химических реакций в неорганической химии по числу и составу исходных веществ и продуктов по тепловому эффекту по изменению степени окисления атомов по обратимости процесса по фазе по использованию катализатора

Классификация по числу и составу исходных и образующихся веществ: Реакции соединения: А + В = АВ Zn + Cl 2 = ZnCl 2 CaO + CO 2 = CaCO 3 Реакции разложения: АВ = А + В 2H 2 O = 2H 2 + O 2 Cu(OH) 2 = CuO + H 2 O Реакции замещения: АВ + С = А + СВ CuSO 4 + Fe = Cu + FeSO 4 Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3 Реакции обмена: АВ + CD = AD + CB CuO + H2SO4 = CuSO4 + H2O NaOH + HCl = NaCl + H 2 O

Даны схемы реакций: 1. Гидроксид меди(II) → оксид меди(II) + вода 2. Хлорид бария + сульфат натрия → … 3. Соляная кислота + цинк → хлорид цинка + водород 4. Оксид фосфора(V) + вода → … I уровень: Укажите типы реакций, запишите одно из уравнений (по выбору). II уровень: Укажите типы реакций, запишите одно из уравнений, в котором не указаны продукты (по выбору). III уровень: Укажите типы реакций и запишите все уравнения.

Реакции с участием органических соединений подчиняются тем же законам (закон сохранения массы и энергии, закон действия масс, закон Гесса и др.) и проявляют те же закономерности (стехиометрические, энергетические, кинематические) , что и реакции неорганические.

Органические реакции принято классифицировать по механизмам протекания Под механизмом реакции понимают последовательность отдельных стадий протекания реакции с указанием промежуточных частиц, образующихся на каждой из этих стадий. по направлению и конечным продуктам реакции - присоединения; - отщепления (элимирования); - замещения; - перегруппировки (изомеризации); - окисления; - восстановления.

Способ разрыва ковалентной связи определяет тип механизма реакций: Радикальный (гомолитический) X:Y → X . + . Y R . (X . , . Y) – радикалы (свободные атомы или частицы с неспаренными электронами, неустойчивые и способные вступать в химические превращения) Ионный (гетеролитический) X:Y → X + + :Y - X + - электрофильный реагент (электрофил: любящий электрон) :Y - - нуклеофильный реагент (нуклеофил: любящий протон)

Радикальные реакции имеют цепной механизм, включающий стадии: зарождение, развитие и обрыв цепи. Зарождение цепи (инициирование) Cl 2 → Cl . + Cl . Рост (развитие) цепи СН 4 + Cl . → СН 3 . + Н Cl CH 3 . + Cl 2 → CH 3 -Cl + Cl . Обрыв цепи CH 3 . + Cl . → CH 3 Cl CH 3 . + CH 3 . → CH 3 -CH 3 Cl . + Cl . → Cl 2

Ионные реакции происходят без разрыва электронных пар, образующих химические связи: оба электрона переходят на орбиталь одного из атомов продукта реакции с образованием аниона. Гетеролитический распад ковалентной полярной связи приводит к образованию нуклеофилов (анионов) и электрофилов (катионов). CH 3 -Br + Na + OH - → CH 3 -OH + Na + Br - субстрат реагент продукты реакции (нуклеофил) C 6 H 5 -H + HO: NO 2 → C 6 H 5 -NO 2 + H-OH субстрат реагент продукты реакции (электрофил)

Классификация по направлению и конечному результату Реакции замещения А-В + С → А-С + В Реакции присоединения С=С + А-В → А-С-С-В Реакции отщепления (элиминирования) А-С-С-В → С=С + А-В Реакции перегруппировки (изомеризации) Х-А-В → А-В-Х Реакции окисления и восстановления, сопровождаются изменением степени окисления атома углерода в соединениях, где атом углерода – реакционный центр. Проблема: К какому типу реакций можно отнести реакцию полимеризации? Докажите её принадлежность к определённому типу реакций и приведите пример.

Тестовое задание. 1. Соотнесите: Раздел химии Тип реакции Неорганическая а) замещения б) обмена Органическая в) соединения г) разложения д) отщепления е) изомеризации ж) присоединения 2. Соотнесите: Схема реакции Тип реакции АВ + С → АВ + С а) замещения АВС → АВ + С б) присоединения АВС → АСВ в) отщепления АВ + С → АС + В г) изомеризации

3. Бутан вступает в реакцию с веществом, формула которого: 1) Н 2 О 2) С 3 Н 8 3) Cl 2 4) HCl 4 . Субстратом в предложенных схемах реакций является вещество СН 3 -СООН (А) + С 2 Н 5 -ОН (Б) → СН 3 СООС 2 Н 5 + Н 2 О СН 3 -СН 2 -ОН (A) + H-Br (B) → CH 3 -CH 2 -Br + H 2 O CH 3 -CH 2 -Cl (A) + Na-OH (B) → CH 2 =CH 2 + NaCl + H 2 O 5. Левой части уравнения С 3 Н 4 + 5О 2 → … соответствует правая часть: → С 3 Н 6 + Н 2 О → С 2 Н 4 + Н 2 О → 3СО 2 + 4Н 2 О → 3СО 2 + 2Н 2 О 6. Объём кислорода, который потребуется для полного сгорания 5л метана, равен 1) 1л 2) 5л 3) 10л 4) 15л

Выводы Органические реакции подчиняются общим законам и общим закономерностям их протекания. Они имеют общие для всех реакций признаки, но имеют и свои характерные особенности. По механизму протекания реакции делятся на свободнорадикальные и ионные. По направлению и конечному результату химического превращения: замещения, присоединения, окисления и восстановления, изомеризации, отщепления, поликонденсации и др.


Чаще всего органи­ческие реакции классифицируют по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций - радикальные и ионные ./>

Радикальные реакции - это процессы, идущие с гемолитическим разрывом ковалентной связи. При гемолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гемолитического разрыва образуются свободные ра­дикалы:/>

X:Y → X . +.Y

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакции - это процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остают­ся с одной из ранее связанных частиц./>

X:Y → X + + :Y —

В результате гетеролитического разрыва связи получаются за­ряженные частицы: нуклеофильная и электрофильная .

Нуклеофильная частица (нуклеофил) - это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь./>

Электрофильная частица (электрофил) — это частица, имеющая свободную орбиталь на внешнем электронном уровне. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той части­цы, с которой он взаимодействует./>

Частица с положительным зарядом на атоме углерода назы­вается карбокатионом .

Согласно другой классификации, органические реакции делятся на термические , являющиеся результатом столкновений моле­кул при их тепловом движении, и фотохимические , при которых молекулы, поглощая квант света Av, переходят в более высокие энергетические состояния и далее подвергаются химическим пре­вращениям. Для одних и тех же исходных соединений термиче­ские и фотохимические реакции обычно приводят к различным продуктам. Классическим примером здесь является термическое и фотохимическое хлорирование бензола - в первом случае образуется хлорбензол, во втором случае - гексахлорциклогексан.

Кроме того, в органической химии реакции часто классифици­руются так же, как и в неорганической химии - по структурно­му признаку . В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, уча­ствующих в реакции. Наиболее часто встречаются следующие ти­пы превращений:

1) присоединение R-CH=CH 2 + XY/>→ RCHX-CH 2 Y;

2) замещение R-CH 2 X + Y/>→ R-CH 2 Y + X;

3) отщепление R-CHX-CH 2 Y/>→ R-CH=CH 2 + XY;

(элиминирование)

4) полимеризация n (СН 2 =СН 2) />→ (-CH 2 -СН 2 -)n

В большинстве случаев элиминируемая/> молекула образуется при соединении двух частиц, отщепленных от сосед­них атомов углерода. Такой процесс называется 1,2-элиминированием.

Кроме приведенных четырех типов простейших механизмов, реакций на практике употребляются еще следующие обозначения некоторых классов реакций, приведенные ниже.

Окисление - реакция, при которой под действием окисляю­щего реагента вещество соединяется с кислородом (либо другим электроотрицательным элементом, например, галогеном) или те­ряет водород (в виде воды или молекулярного водорода)./>

Действие окисляющего реагента (окисление) обозначается в схеме реакции символом [О], а действие восстанавливающего реагента (восстановление) - сим­волом [Н].

Гидрирование — реакция, представляющая собой частный случай восстановления. Водород присоединяется к кратной связи или ароматическому ядру в присутствии катализатора. />

Конденсация - реакция, при которой происходит рост цепи. Сначала происходит присоединение, за которым обычно следует элиминирование./>

Пиролиз - реакция, при которой соединение подвергается термическому разложению без доступа воздуха (и обычно при пониженном давлении) с образованием одного или нескольких продуктов. Примером пиролиза может служить термическое разложение каменного угля. Иногда вместо пиролиза употребляется термин "сухая перегонка" (в случае разложения каменного угля используется также термин "карбонизация")./>

Некоторые реакции получают свои названия по продуктам, к которым они приводят. Так, если в молекулу вводится метильная группа, то говорят о метилировании , если ацетил - то об ацетилировании , если хлор - то о хлорировании и т.д.

Лекция: Классификация химических реакций в неорганической и органической химии

Виды химических реакций в неорганической химии


А) Классификация по количеству начальных веществ:

Разложение – вследствие данной реакции, из одного имеющегося сложного вещества, образуются два или несколько простых, а так же сложных веществ.

Пример: 2Н 2 O 2 → 2Н 2 O + O 2

Соединение – это такая реакция, при которой из двух и более простых, а также сложных веществ, образуется одно, но более сложное.

Пример: 4Al+3O 2 → 2Al 2 O 3

Замещение – это определенная химическая реакция, которая проходит между некоторыми простыми, а так же сложными веществами. Атомы простого вещества, в данной реакции, замещаются на атомы одного из элементов, находящегося в сложном веществе.

Пример: 2КI + Cl2 → 2КCl + I 2

Обмен – это такая реакция, при которой два сложных по строению вещества обмениваются своими частями.

Пример: HCl + KNO 2 → KCl + HNO 2

Б) Классификация по тепловому эффекту:

Экзотермические реакции – это определенные химические реакции, при которых происходит выделение тепла.
Примеры:

S +O 2 → SO 2 + Q

2C 2 H 6 + 7O 2 → 4CO 2 +6H 2 O + Q


Эндотермические реакции – это определенные химические реакции, при которых происходит поглощение тепла. Как правило, это реакции разложения.

Примеры:

CaCO 3 → CaO + CO 2 – Q
2KClO 3 → 2KCl + 3O 2 – Q

Теплота, которая выделяется или поглощается в результате химической реакции, называется тепловым эффектом.


Химические уравнения, в которых указан тепловой эффект реакции, называют термохимическими .


В) Классификация по обратимости:

Обратимые реакции – это реакции, которые протекают при одинаковых условиях во взаимопротивоположных направлениях.

Пример: 3H 2 + N 2 ⇌ 2NH 3

Необратимые реакции – это реакции, которые протекают только в одном направлении, а так же завершающиеся полным расходом всех исходных веществ. При этих реакциях выделяе тся газ, осадок, вода.
Пример: 2KClO 3 → 2KCl + 3O 2

Г) Классификация по изменению степени окисления:

Окислительно - восстановительные реакции – в процессе данных реакций происходит изменение степени окисления.

Пример: Сu + 4HNO 3 → Cu(NO 3) 2 + 2NO 2 + 2H 2 O.

Не окислительно - восстановительные – реакции без изменения степени окисления.

Пример: HNO 3 + KOH → KNO 3 + H 2 O.

Д) Классификация по фазе:

Гомогенные реакции реакции, протекающие в одной фазе, когда исходные вещества и продукты реакции имеют одно агрегатное состояние.

Пример: Н 2 (газ) + Cl 2 (газ) → 2HCL

Гетерогенные реакции – реакции, протекающие на поверхности раздела фаз, при которых продукты реакции и исходные вещества имеют разное агрегатное состояние.
Пример: CuO+ H 2 → Cu+H 2 O

Классификация по использованию катализатора:

Катализатор – вещество, которое ускоряет реакцию. Каталитическая реакция протекает в присутствии катализатора, некаталитическая – без катализатора.
Пример: 2H 2 0 2 MnO 2 2H 2 O + O 2 катализатор MnO 2

Взаимодействие щелочи с кислотой протекает без катализатора.
Пример: КOH + HCl КCl + H 2 O

Ингибиторы – вещества, замедляющие реакцию.
Катализаторы и ингибиторы сами в ходе реакции не расходуются.

Виды химических реакций в органической химии


Замещение – это реакция, в процессе которой происходит замена одного атома/группы атомов, в исходной молекуле, на иные атомы/группы атомов.
Пример: СН 4 + Сl 2 → СН 3 Сl + НСl

Присоединение – это реакции, при которых несколько молекул вещества соединяются в одну. К реакциям присоединения относятся:

  • Гидрирование – реакция, в процессе которой происходит присоединение водорода по кратной связи.

Пример: СН 3 -СН = СН 2 (пропен) + Н 2 → СН 3 -СН 2 -СН 3 (пропан)

    Гидрогалогенирование – реакция, присоединяющая галогенводород.

Пример: СН 2 = СН 2 (этен) + НСl → СН 3 -СН 2 -Сl (хлорэтан)

Алкины реагируют с галогеноводородами (хлороводородом, бромоводородом) так же, как и алкены. Присоединение в химической реакции проходит в 2 стадии, и определяется правилом Марковникова:


При присоединении протонных кислот и воды к несимметричным алкенам и алкинам атом водорода присоединяется к наиболее гидрогенизированному атому углерода.

Механизм данной химической реакции. Образующийся в 1 - ой, быстрой стадии, p- комплекс во 2 - ой медленной стадии постепенно превращается в s-комплекс - карбокатион. В 3 - ей стадии происходит стабилизация карбокатиона – то есть взаимодействие с анионом брома:

И1, И2 - карбокатионы. П1, П2 - бромиды.


Галогенирование – реакция, при которой присоединяется галоген. Галогенированием так же, называют все процессы, в результате которых в органические соединения вводятся атомы галогена. Данное понятие употребляется в "широком смысле". В соответствии с данным понятием, различают следующие химические реакции на основе галогенирования: фторирование, хлорирование, бромирование, йодирование.

Галогенсодержащие органические производные считаются важнейшими соединениями, которые применяются как в органическом синтезе, так и в качестве целевых продуктов. Галогенпроизводные углеводородов, считаются исходными продуктами в большом количестве реакций нуклеофильного замещения. Что касается практического использования соединений, содержащих галоген, то они применяются в виде растворителей, например хлорсодержащие соединения, холодильных агентов - хлорфторпроизводные, фреоны, пестицидов, фармацевтических препаратов, пластификаторов, мономеров для получения пластмасс.


Гидратация – реакции присоединения молекулы воды по кратной связи.

Полимеризация – это особый вид реакции, при которой молекулы вещества, имеющие относительную невеликую молекулярную массу, присоединяются друг к другу, впоследствии образовывая молекулы вещества с высокой молекулярной массой.



Разделение химических реакций на органические и неорганические является довольно условным. К типичным органическим реакциям относят те, в которых участвует хотя бы одно органическое соединение, которое в ходе реакции изменяет свою молекулярную структуру. Поэтому реакции, в которых молекула органического соединения выступает в качестве растворителя или лиганда, к типичным органическим реакциям не относятся.

Органические реакции, так же, как и неорганические, могут быть классифицированы по общим признакам на реакции переноса:

– единичного электрона (окислительно-восстановительные);

– электронных пар (реакции комплексообразования);

– протона (кислотно-основные реакции);

– атомных групп без изменения числа связей (реакции замещения и перегруппировки);

– атомных групп с изменением числа связей (реакции присоединения, элиминирования, разложения).

Вместе с тем, многообразие и своеобразие органических реакций приводит к необходимости их классификации и по другим признакам:

– изменению числа частиц в ходе реакции;

– характеру разрыва связей;

– электронной природе реагентов;

– механизму элементарных стадий;

– типу активирования;

– частным признакам;

– молекулярности реакций.

1) По изменению числа частиц в ходе реакции (или по типу превращения субстрата) различают реакции замещения, присоединения, элиминирования (отщепления), разложения и перегруппировки.

В случае реакций замещения один атом (или группа атомов) в молекуле субстрата замещается другим атомом (или группой атомов), в результате чего образуется новое соединение:

СН 3 СН 3 + С1 2  СН 3 СН 2 С1 + НC1

этан хлор хлорэтан хлороводород

СН 3 СН 2 С1 + NaOH (водный р-р)  СН 3 СН 2 ОН + NaC1

хлорэтан гидроксид натрия этанол хлорид натрия

В символе механизма реакции замещения обозначаются латинской буквой S (от англ. «substitution» – замещение).

При протекании реакций присоединения из двух (или нескольких) молекул образуется одно новое вещество. При этом реагент присоединяется по кратной связи (С= С, СС, С= О, СN) молекулы субстрата:

CH 2 = CH 2 + HBr → CH 2 Br СH 3

этилен бромоводород бромэтан

С учетом символики механизма процессов реакции присоединения обозначаются буквой A или сочетанием Ad (от англ. «addition» – присоединение).

В результате реакции элиминирования (отщепления) от субстрата отщепляется молекула (или частица) и образуется новое органическое вещество, содержащее кратную связь:

СН 3 СН 2 ОН СН 2 = СН 2 + Н 2 О

этанол этилен вода

В символе механизма реакции замещения обозначаются буквой E (от англ. «elimination» – элиминирование, отщепление).

Реакции разложения протекают, как правило, с разрывом связей углерод – углерод (СС) и приводят к образованию из одного органическоговещества двух или более веществ более простого строения:

СН 3 СН(ОН) СООН
СН 3 СНО + HCООН

молочная кислота ацетальдегид муравьиная кислота

Перегруппировка – реакция, в ходе которой структура субстрата меняется с образованием продукта, который является изомерным исходному, то есть без изменения молекулярной формулы. Этот тип превращения обозначают латинской буквой R (от английского «rearrangement» – перегруппировка).

Например, 1-хлорпропан перегруппировывается в изомерное соединение 2-хлорпропан в присутствии хлорида алюминия, выступающего в качестве катализатора.

СН 3 СН 2 СН 2 С1  СН 3 СНС1 СН 3

1-хлорпропан 2-хлорпропан

2) По характеру разрыва связей различают гомолитические (радикальные), гетеролитические (ионные) и синхронные реакции.

Ковалентная связь между атомами может быть разорвана таким образом, что электронная пара связи делится между двумя атомами, образующиеся частицы получают по одному электрону и становятся свободными радикалами – говорят, что происходит гомолитическое расщепление. Новая связь при этом образуется за счёт электронов реагента и субстрата.

Радикальные реакции особенно распространены в превращениях алканов (хлорирование, нитрование и др.).

При гетеролитическом способе разрыва связи общая электронная пара передаётся одному из атомов, образовавшиеся частицы становятся ионами, обладают целочисленным электрическим зарядом и подчиняются законам электростатического притяжения и отталкивания.

Гетеролитические реакции по электронной природе реагентов подразделяются на электрофильные (например, присоединение по кратным связям в алкенах или замещение водорода в ароматических соединениях) и нуклеофильные (например, гидролиз галогенпроизводных или взаимодействие спиртов с галогеноводородами).

Каков механизм реакции – радикальный или ионный, можно установить, изучив экспериментальные условия, благоприятствующие течению реакции.

Так, радикальные реакции, сопровождающиеся гомолитическим разрывом связи:

– ускоряются при облучении h, в условиях высоких температур реакции в присутствии веществ, легко разлагающихся с образованием свободных радикалов (например, перекиси);

– замедляются в присутствии веществ, легко реагирующих со свободными радикалами (гидрохинон, дифениламин);

– обычно проходят в неполярных растворителях или газовой фазе;

– часто являются автокаталитическими и характеризуются наличием индукционного периода.

Ионные реакции, сопровождающиеся гетеролитическим разрывом связи:

– ускоряются в присутствии кислот или оснований и не подвержены влиянию света или свободных радикалов;

– не подвержены влиянию акцепторов свободных радикалов;

– на скорость и направление реакции влияет природа растворителя;

– редко идут в газовой фазе.

Синхронные реакции протекают без промежуточного образования ионов и радикалов: разрыв старых и образование новых связей происходят синхронно (одновременно). Примером синхронной реакции является диеновый синтез – реакция Дильса-Альдера.

Обратите внимание, особая стрелка, которую применяют для обозначения гомолитического разрыва ковалентной связи, означает перемещение одного электрона.

3) В зависимости от электронной природы реагентов реакции подразделяют на нуклеофильные, электрофильные и свободнорадикальные.

Свободные радикалы – это электронейтральные частицы, имеющие неспаренные электроны, например: Cl  ,  NO 2 ,
.

В символе механизма реакции радикальные реакции обозначаются нижним индексом R.

Нуклеофильные реагенты – это одно- или многоатомные анионы или электронейтральные молекулы, имеющие центры с повышенным частичным отрицательным зарядом. К ним относятся такие анионы и нейтральные молекулы, как HO – , RO – , Cl – , Br – , RCOO – , CN – , R – , NH 3 , C 2 H 5 OH и т.д.

В символе механизма реакции радикальные реакции обозначаются нижним индексом N.

Электрофильные реагенты – это катионы, простые или сложные молекулы, которые сами по себе или же в присутствии катализатора обладают повышенным сродством к электронной паре или отрицательно заряженным центрам молекул. К ним относятся катионы H + , Cl + , + NO 2 , + SO 3 H, R + и молекулы со свободными орбиталями: AlCl 3 , ZnCl 2 и т.п.

В символе механизма электрофильные реакции обозначаются нижним индексом E.

Нуклеофилы представляют собой доноры электронов, а электрофилы – их акцепторы.

Электрофильные и нуклеофильные реакции можно рассматривать как кислотно-основные; в основе такого подхода лежит теория обобщённых кислот и оснований (кислоты Льюиса – это акцептор электронной пары, основание Льюиса – донор электронной пары).

Однако следует различать понятия электрофильности и кислотности, так же как нуклеофильности и основности, ибо они не идентичны. Например, основность отражает сродство к протону, а нуклеофильность оценивается чаще всего как сродство к атому углерода:

ОН – + Н +  Н 2 О гидроксид-ион как основание

ОН – + СН 3 +  СН 3 ОН гидроксид-ион как нуклеофил

4) В зависимости от механизма элементарных стадий реакции органических соединений могут быть самыми различными: нуклеофильное замещение S N , электрофильное замещение S E , свободнорадикальное замещение S R , парное отщепление, или элиминирование Е, нуклеофильное или электрофильное присоединение Ad E и Ad N и т. д.

5) По типу активирования реакции подразделяют на каталитические, некаталитические и фотохимические.

Каталитическими называют реакции, протекание которых требует присутствия катализатора. Если в качестве катализатора выступает кислота, речь идёт о кислотном катализе. К кислотно-катализируемым относят, например, реакции этерификации с образованием сложных эфиров, дегидратации спиртов с образованием непредельных соединений и т.д.

Если катализатором является основание, то говорят об основном катализе (как показано ниже, это характерно для метанолиза триацилглицеринов).

Некаталитическими являются реакции, которые не требуют присутствия катализатора. Они ускоряются только при повышении температуры, поэтому их иногда называют термическими, хотя этот термин не используется широко. Исходными реагентами в этих реакциях служат высокополярные или заряженные частицы. Это могут быть, например, реакции гидролиза, кислотно-основные взаимодействия.

Фотохимические реакции активируются облучением (фотонами, h); эти реакции не протекают в темноте даже при значительном нагревании. Эффективность процесса облучения измеряется квантовым выходом, который определяется как число прореагировавших молекул реагента на один поглощённый квант света. Некоторые реакции характеризуются квантовым выходом меньше единицы, для других, например для цепных реакций галогенирования алканов, этот выход может достигать 10 6 .

6) По частным признакам классификация реакций чрезвычайно разнообразна: гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, карбоксилирование и декарбоксилирование, енолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.

7) Молекулярность органической реакции определяют по числу молекул, в которых происходит реальное изменение ковалентных связей на самой медленной стадии реакции, определяющей её скорость. Различают следующие виды реакций:

– мономолекулярные – в лимитирующей стадии участвует одна молекула;

– бимолекулярные – таких молекул две и т.д.

Молекулярности выше трех, как правило, не бывает. Исключение составляют топохимические (твердофазные) реакции.

Молекулярность отражают в символе механизма реакции, добавляя соответствующую цифру, например: S N 2 – замещение нуклеофильное бимолекулярное, S E 1 – замещение электрофильное мономолекулярное; Е1 – элиминирование мономолекулярное и т.д.

Рассмотрим несколько примеров.

Пример 1 . Атомы водорода в алканах могут быть замещены на атомы галогенов:

СН 4 + С1 2  СН 3 С1 + НC1

Реакция идет по цепному радикальному механизму (атакующая частица – радикал хлора C1 ). Значит по электронной природе реагентов это реакция свободнорадикальная; по изменению числа частиц – реакция замещения; по характеру разрыва связи – гомолитическая реакция; тип активирования – фотохимический или термический; по частным признакам – галогенирование; механизм реакции – S R .

Пример 2 . Атомы водорода в алканах могут быть замещены на нитрогруппу. Эта реакция носит название реакции нитрования и идет по схеме:

RH + HОNО 2  RNО 2 + Н 2 О

Реакция нитрования в алканах также идет по цепному радикальному механизму. Значит по электронной природе реагентов это реакция свободнорадикальная; по изменению числа частиц – реакция замещения; по характеру разрыва связи – гомолитическая; тип активирования – термический; по частным признакам – нитрование; по механизму – S R .

Пример 3 . Алкены легко присоединяют по двойной связи галогеноводород:

CH 3 CH = CH 2 + HBr → CH 3 CHBr СH 3 .

Реакция может идти по механизму электрофильного присоединения, а значит, по электронной природе реагентов – реакция электрофильная (атакующая частица - Н +); по изменению числа частиц – реакция присоединения; по характеру разрыва связи – гетеролитическая; по частным признакам – гидрогалогенирование; по механизму – Ad E .

Эта же реакция в присутствии перекисей может идти по радикальному механизму, тогда по электронной природе реагентов – реакция будет радикальной (атакующая частица – Br ); по изменению числа частиц – реакция присоединения; по характеру разрыва связи – гомолитическая; по частным признакам – гидрогалогенирование; по механизму – Ad R .

Пример 4 . Реакция щелочного гидролиза алкилгалогенидов протекает по механизму бимолекулярного нуклеофильного замещения.

СН 3 СН 2 I + NaОН  СН 3 СН 2 ОН + NaI

Значит, по электронной природе реагентов – реакция нуклеофильная (атакующая частица – ОН –); по изменению числа частиц – реакция замещения; по характеру разрыва связи – гетеролитическая, по частным признакам – гидролиз; по механизму – S N 2.

Пример 5 . При взаимодействии алкилгалогенидов со спиртовыми растворами щелочей образуются алкены.

СН 3 СН 2 СН 2 Br
[СН 3 СН 2 С + Н 2 ]  СН 3 СН= СН 2 + H +

Это объясняется тем, что образующийся карбкатион стабилизируется не присоединением иона гидроксила, концентрация которого в спирте незначительна, а отщеплением протона от соседнего атома углерода. Реакция по изменению числа частиц – отщепление; по характеру разрыва связи – гетеролитическая; по частным признакам – дегидрогалогенирование; по механизму – элиминирование Е.

Контрольные вопросы

1. Перечислите признаки, по которым классифицируют органические реакции.

2. Как можно классифицировать следующие реакции:

– сульфирование толуола;

– взаимодействие этанола и серной кислоты с образованием этилена;

– бромирование пропена;

– синтез маргарина из растительного масла.