Мутационная изменчивость возникает в случае появления мутаций - стойких изменений генотипа (т.е. молекул днк), которые могут затрагивать целые хромосомы, их части или отдельные гены. Мутации могут быть полезными, вредными или нейтральными. Согласно современной классификации мутации принято делить на следующие группы. 1. Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом. Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ. 2. Хромосомные мутации - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение. Как и геномные мутации, хромосомные мутации играют огромную роль в эволюционных процессах. 3. Генные мутации связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций. Синтез белка основан на соответствии расположения нуклеотидов в гене и порядком аминокислот в молекуле белка. Возникновение генных мутаций (изменение состава и последовательности нуклеотидов) изменяет состав соответствующих белков-ферментов и в итоге к фенотипическим изменениям. Мутации могут затрагивать все особенности морфологии, физиологии и биохимии организмов. Многие наследственные болезни человека также обусловлены мутациями генов. Мутации в естественных условиях случаются редко - одна мутация определенного гена на 1000-100000 клеток. Но мутационный процесс идет постоянно, идет постоянное накопление мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций. Мутации - это крупнейший биологический фактор, обуславливающий огромную наследственную изменчивость организмов, что дает материал для эволюции.

1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

2. По степени приспособительности мутации делятся на полезные и вредные. Вредные - могут быть летальными и вызывать гибель организма еще в эмбриональном развитии.

3. Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

4. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

Генные, или точковые, мутации - изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, а следовательно, аномальной структуры белка и развитию аномального признака. Генная мутация - это результат "ошибки" при репликации ДНК.

Хромосомные мутации - изменения структуры хромосом, хромосомные перестройки. Можно выделить основные типы хромосомных мутаций:

а) делеция - потеря участка хромосомы;

б) транслокация - перенос части хромосом на другую негомологичную хромосому, как результат - изменение группы сцепления генов;

в) инверсия - поворот участка хромосомы на 180°;

г) дупликация - удвоение генов в определенном участке хромосомы.

Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.

Геномные мутации - изменения числа хромосом в клетке, появление лишней или потеря хромосомы как результат нарушения в мейозе. Кратное увеличение числа хромосом называется полиплоидией. Этот вид мутации часто встречается у растений. Многие культурные растения полиплоидны по отношению к диким предкам. Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма.

Зная изменчивость и мутации у одного вида, можно предвидеть возможность их появления и у родственных видов, что имеет значение в селекции.

Хромосомы заключают в себе генетическую информацию в форме генов. Ядро каждой клетки человека, за исключением яйцеклетки и сперматозоида, содержит 46 хромосом, образующих 23 пары. Одна хромосома в каждой паре получена от матери, а другая - от отца. У обоих полов 22 из 23 пар хромосом одинаковые, отличается только оставшаяся пара половых хромосом. У женщин имеется две Х-хромосомы (XX), а у мужчин - одна Х- и одна Y-хромосома (XY). Следовательно, нормальный набор хромосом (кариотип) мужчины - 46, XY, а женщины - 46, XX.

Хромосомные аномалии

Если ошибка происходит во время особой разновидности клеточного деления, при котором образуются яйцеклетки и сперматозоиды, то возникают аномальные половые клетки, что ведет к рождению потомства с хромосомной патологией. Хромосомный дисбаланс может быть как количественным, так и структурным.

Развитие пола ребенка

В обычных условиях наличие Y-хромосомы приводит к развитию плода мужского пола вне зависимости от количества Х-хромосом, а отсутствие Y-хромосомы - к развитию плода женского пола. Аномалии половых хромосом оказывают менее деструктивное влияние на физические характеристики индивида (фенотип), нежели аномалии аутосомных. Y-хромосома содержит малое количество генов, поэтому ее лишние копии оказывают минимальное влияние. Как у мужчин, так и у женщин требуется наличие только одной активной Х-хромосомы. Лишние Х-хромосомы почти всегда являются полностью неактивными. Этот механизм минимизирует эффект аномальных Х-хромосом, поскольку лишние и структурно аномальные копии инактивируются, оставляя «рабочей» только одну нормальную Х-хромосому. Однако существуют на Х-хромосоме некоторые гены, которым удается избежать инактивации. Считается, что наличие одной или более двух копий таких генов является причиной аномальных фенотипов, ассоциированных с дисбалансом половых хромосом. В лаборатории анализ хромосом проводится под световым микроскопом при 1000-кратном увеличении. Хромосомы становятся видны только при делении клетки на две генетически идентичные дочерние клетки. Для получения хромосом используют клетки крови, которые культивируют в специальной среде, богатой питательными веществами. На определенной стадии деления клетки обрабатывают раствором, который вызывает их набухание, что сопровождается «распутыванием» и разделением хромосом. Затем клетки помещают на предметное стекло микроскопа. По мере их высыхания происходит разрыв клеточной мембраны с выходом хромосом во внешнюю среду. Хромосомы окрашивают таким образом, чтобы на каждой из них появились светлые и темные диски (полоски), порядок которых специфичен для каждой пары. Форму хромосом и характер дисков тщательно изучают с целью идентификации каждой хромосомы и выявления возможных аномалий. Количественные аномалии имеют место при недостатке или избытке хромосом. Некоторые синдромы, развивающиеся в результате таких дефектов, имеют очевидные признаки; другие бывают почти незаметны.

Различают четыре основные количественные хромосомные аномалии, каждая из которых ассоциирована с определенным синдромом: 45, X - синдром Тернера. 45, X, или отсутствие второй половой хромосомы, - самый распространенный кариотип при синдроме Тернера. Индивиды с этим синдромом имеют женский пол; часто заболевание диагностируют при рождении благодаря таким характерным признакам, как кожные складки на задней поверхности шеи, отечность кистей рук и стоп и низкая масса тела. К другим симптомам относятся низкорослость, короткая шея с крыловидными складками, широкая грудная клетка с широко расположенными сосками, пороки сердца и патологическое отклонение предплечий. Большинство женщин с синдромом Тернера бесплодны, у них отсутствуют менструации и не развиты вторичные половые признаки, в частности молочные железы. Практически все пациентки, однако, имеют нормальный уровень умственного развития. Частота встречаемости синдрома Тернера составляет от 1:5000 до 1:10 000 женщин.

■ 47, XXX - трисомия Х-хромосомы.

Приблизительно 1 из 1000 женщин имеет кариотип 47, XXX. Женщины с этим синдромом обычно высокие и худые, без каких-либо явных физических отклонений. Однако нередко у них отмечается снижение коэффициента интеллекта с определенными проблемами в обучении и поведении. Большинство женщин с трисомией Х-хромосомы фертильны и способны иметь детей с нормальным набором хромосом. Синдром редко выявляется благодаря нерезкой выраженности фенотипических признаков.

■ 47, XXY - синдром Клайнфельтера. Приблизительно 1 из 1000 мужчин имеет синдром Клайнфельтера. Мужчины с кариотипом 47, XXY выглядят нормальными при рождении и в раннем детстве, за исключением небольших проблем в обучении и поведении. Характерные признаки становятся заметными в период полового созревания и включают высокий рост, маленький размер яичек, отсутствие сперматозоидов, а иногда и недостаточное развитие вторичных половых признаков с увеличением грудных желез.

■ 47, XYY - XYY-синдром. Дополнительная Y-хромосома присутствует примерно у 1 из 1000 мужчин. Большинство мужчин с XYY-синдромом внешне выглядят нормально, но при этом имеют очень высокий рост и сниженный уровень интеллекта. Хромосомы по форме отдаленно напоминают букву X и имеют два коротких и два длинных плеча. Для синдрома Тернера типичны следующие аномалии: изохромосома по длинному плечу. В ходе образования яйцеклеток или сперматозоидов происходит разделение хромосом, при нарушении расхождения которых может появиться хромосома с двумя длинными плечами и полным отсутствием коротких; кольцевая хромосома. Образуется вследствие утраты концов коротких и длинных плеч Х-хромосомы и соединения оставшихся участков в кольцо; делеция (утрата) части короткого плеча одной из Х-хромосом. Аномалии длинного плеча Х-хромосомы обычно вызывают дисфункцию репродуктивной системы, например преждевременную менопаузу.

Y-хромосома

Ген, отвечающий за развитие зародыша по мужскому типу, находится на коротком плече Y-хромосомы. Делеция короткого плеча приводит к формированию женского фенотипа, часто с некоторыми признаками синдрома Тернера. Гены на длинном плече ответственны за фертильность, поэтому любые делеции здесь могут сопровождаться мужским бесплодием.

Ожидание рождения ребенка - самое прекрасное время для родителей, но также и самое страшное. Многие волнуются, что малыш может родиться с какими-либо недостатками, физическими или умственными отклонениями.

Наука не стоит на месте, есть возможность проверить на маленьких сроках беременности малыша на наличие отклонений в развитии. Практически все эти анализы могут показать, все ли нормально с ребенком.

Почему так происходит, что у одних и тех же родителей могут появиться на свет абсолютно разные дети - здоровый ребенок и ребенок с отклонениями? Это определяют гены. В рождении недоразвитого малыша или ребенка с физическими недостатками влияют генные мутации, связанные с изменением структуры ДНК. Поговорим об этом подробнее. Рассмотрим, как это происходит, какие генные мутации бывают, и их причины.

Что такое мутации?

Мутации - это физиологическое и биологическое изменение клеток в структуре ДНК. Причиной может стать облучение (при беременности нельзя делать снимки рентгеновские, на наличие травм и переломов), ультрафиолетовые лучи (долгое нахождение на солнце во время беременности или нахождение в комнате с включенными лампами ультрафиолетового света). Также такие мутации могут передаться и по наследству от предков. Все они распределяются на типы.

Генные мутации с изменением структуры хромосом или их количества

Это мутации, при которых строение и число хромосом изменены. Хромосомные участки могут выпадать или удваиваться, перемещаться в зону негомологическую, поворачиваться от нормы на сто восемьдесят градусов.

Причины появления такой мутации - это нарушение при кроссенговере.

Генные мутации связаны с изменением структуры хромосом или их количества, являются причиной серьезных расстройств и болезней у малыша. Такие заболевания неизлечимы.

Виды хромосомных мутаций

Всего различаются два вида основных хромосомных мутаций: численные и структурные. Анэуплоидии - это виды по количеству хромосом, то есть когда генные мутации связаны с изменением числа хромосом. Это возникновение дополнительной или нескольких последних, потеря какой-либо из них.

Генные мутации связаны с изменением структуры в том случае, когда хромосомы разрываются, а в дальнейшем воссоединяются, нарушив нормальную конфигурацию.

Виды численных хромосом

По числу хромосом мутации разделяют на анэуплоидии, то есть виды. Рассмотрим основные, выясним разницу.

  • трисомии

Трисомия - это возникновение в кариотипе лишней хромосомы. Самое распространенное явление - это появление двадцать первой хромосомы. Она становится причиной синдрома Дауна, или, как еще называют это заболевание - трисомия двадцать первой хромосомы.

Синдром Патау выявляется по тринадцатой, а по восемнадцатой хромосоме диагностируют Это все аутосомные трисомии. Прочие трисомии не являются жизнеспособными, они погибают в утробе и теряются при самопроизвольных абортах. Те индивидуумы, у которых возникают дополнительные половые хромосомы (X, Y), - жизнеспособны. Клиническое проявление таких мутаций весьма незначительно.

Генные мутации, связанные с изменением числа, возникают по определенным причинам. Трисомии чаще всего могут возникнуть при расхождении в анафазе (мейоз 1). Результатом такого расхождения является то, что обе хромосомы попадают только в одну из двух дочерних клеток, вторая остается пустой.

Реже может возникнуть нерасхождение хромосом. Это явление называют нарушением в расхождении сестринских хроматид. Возникает в мейозе 2. Это именно тот случай, когда две совершенно одинаковые хромосомы селятся в одной гамете, вызывая трисомную зиготу. Нерасхождение происходит в ранние стадии процесса дробления яйцеклетки, которая была оплодотворена. Таким образом, возникает клон клеток-мутантов, который может охватить большую или меньшую часть тканей. Иногда проявляется клинически.

Многие связывают двадцать первую хромосому с возрастом беременной женщины, но этот фактор до сегодняшнего дня не имеет однозначного подтверждения. Причины, по которым не расходятся хромосомы, остаются неизвестными.

  • моносомии

Моносомией называют отсутствие любой из аутосом. Если такое происходит, то в большинстве случаев плод невозможно выносить, случаются преждевременные роды на ранних сроках. Исключение - моносомия по причине двадцать первой хромосомы. Причиной, по которой возникает моносомия, может стать и нерасхождение хромосом, и потеря хромосомы во время ее пути в анафазе к клетке.

По половым хромосомам моносомия приводит к образованию плода, у которого кариотип ХО. Клиническое проявление такого кариотипа - синдром Тернера. В восьмидесяти процентах случаев из ста появление моносомии по Х-хромосоме происходит из-за нарушения мейоза папы ребенка. Это связано с нерасхождением Х и Y хромосом. В основном плод с кариотипом ХО погибает в утробе матери.

По половым хромосомам трисомия разделяется на три вида: 47 XXY, 47 XXX, 47 XYY. является трисомией 47 XXY. С таким кариотипом шансы выносить ребенка делятся пятьдесят на пятьдесят. Причиной такого синдрома может стать нерасхождение хромосом Х или нерасхождение Х и Y сперматогенеза. Второй и третий кариотипы могут возникнуть только у одной из тысячи беременных женщин, они практически не проявляются и в большинстве случаев обнаруживаются специалистами совершенно случайно.

  • полиплоидия

Это генные мутации, связанные с изменением гаплоидного набора хромосом. Эти наборы могут быть утроенными и учетверенными. Триплоидия чаще всего диагностируется уже только тогда, когда произошел спонтанный аборт. Было несколько случаев, когда матери удавалось выносить такого малыша, но все они погибали, не достигнув и месячного возраста. Механизмы генных мутаций в случае триплодии обуславливают полным расхождением и нерасхождением всех хромосомных наборов либо женских, либо мужских половых клеток. Также механизмом может послужить двойное оплодотворение одной яйцеклетки. В этом случае происходит перерождение плаценты. Такое перерождение называют пузырным заносом. Как правило, такие изменения ведут к развитию у малыша умственных и физиологических нарушений, прерыванию беременности.

Какие генные мутации связаны с изменением структуры хромосом

Структурные изменения хромосом являются следствием разрыва (разрушения) хромосомы. В результате эти хромосомы соединяются, нарушив прежний свой вид. Эти видоизменения могут быть несбалансированными и сбалансированными. Сбалансированные не имеют излишка или недостатка материала, поэтому не проявляются. Проявиться они могут только в тех случаях, если на месте разрушения хромосомы был ген, который является функционально важным. У сбалансированного набора могут появиться гаметы несбалансированные. В следствии оплодотворение яйцеклетки такой гаметой может стать причиной появления плода с несбалансированным хромосомным набором. При таком наборе у плода возникает целый ряд пороков развития, появляются тяжелые виды патологии.

Типы структурных видоизменений

Генные мутации происходят на уровне образования гаметы. Предотвратить этот процесс нельзя, равно как нельзя заведомо узнать, могут произойти. Структурных видоизменений есть несколько видов.

  • делеции

Это изменение связано с потерей части хромосомы. После такого разрыва хромосома становится более короткой, а ее оторванная часть теряется при дальнейшем делении клетки. Интерстициальные делеции - это тот случай, когда одна хромосома разрывается сразу в нескольких местах. Такие хромосомы обычно создают нежизнеспособный плод. Но есть и случаи, когда малыши выживали, но у них из-за такого набора хромосом был синдром Вольфа-Хиршхорна, "кошачий крик".

  • дупликации

Эти генные мутации происходят на уровне организации сдвоенных участков ДНК. В основном дупликация не может стать причиной таких патологий, которые вызывают делеции.

  • транслокации

Транслокация возникает из-за переноса генетического материала с одной хромосомы на другие. Если же происходит разрыв одновременно в нескольких хромосомах и они обмениваются сегментами, то это становится причиной возникновения реципроктной транслокации. Кариотип такой транслокации имеет всего сорок шесть хромосом. Сама же транслокация выявляется только при детальном анализе и изучении хромосомы.

Изменение последовательности нуклеотидов

Генные мутации связаны с изменением последовательности нуклеотидов, когда выражаются в видоизменении структур некоторых участков ДНК. По последствиям такие мутации делятся на два типа - без сдвига рамки считывания и со сдвигом. Чтобы точно знать причины изменения участков ДНК, нужно рассмотреть каждый тип отдельно.

Мутация без сдвига рамки

Эти генные мутации связаны с изменением и заменой нуклеотидных пар в структуре ДНК. При таких заменах не теряется длина ДНК, но возможна потеря и замена аминокислот. Есть вероятность того, что структура белка сохранится, этим послужит Рассмотрим детально оба варианта развития: с заменой и без замены аминокислот.

Мутация с заменой аминокислот

Замена остатка аминокислоты в составе полипептидов называют миссенс-мутациями. В гемоглобиновой молекуле человека есть четыре цепи - две "а" (она размещена в шестнадцатой хромосоме) и две "b" (кодировка в одиннадцатой хромосоме). Если "b" - цепь нормальная, и в ее составе есть сто сорок шесть остатков аминокислот, а шестым является глутаминовая, то гемоглобин будет нормальным. В этом случае кислота глутаминовая должна быть закодирована триплетом ГАА. Если за счет мутации ГАА заменен на ГТА, то вместо глутаминовой кислоты в молекуле гемоглобина образуется валин. Таким образом, вместо нормального гемоглобина HbA появится другой гемоглобин HbS. Таким образом, замена одной аминокислоты и одного нуклеотида станет причиной серьезного тяжелого заболевания - анемии серповидноклеточной.

Эта болезнь проявляется тем, что эритроциты становятся по форме, как серп. В таком виде они не способны нормально доставлять кислород. Если на клеточном уровне гомозиготы имеют формулу HbS/HbS, то это ведет к смерти ребенка в самом раннем детстве. Если формула HbA/HbS, то эритроциты имеют слабую форму изменения. Такое слабое изменение имеет полезное качество - устойчивость организма к малярии. В тех странах, где есть опасность заразиться малярией такая же, как в Сибири простудой, это изменение несет полезное качество.

Мутация без замены аминокислот

Замены нуклеотидов без обмена аминокислотами называются сеймсенс-мутациями. Если в участке ДНК, кодирующем "b"- цепь произойдет замена ГАА на ГАГ, то из-за того, что окажется в избытке, замены глутаминовой кислоты не может произойти. Структура цепи не будет изменена, в эритроцитах не будет видоизменений.

Мутации со сдвигом рамки

Такие генные мутации связаны с изменением длины ДНК. Длина может стать меньше или больше, в зависимости от потери или прибавления нуклеотидных пар. Таким образом, будет изменена полностью вся структура белка.

Может произойти внутригенная супрессия. Это явление происходит, когда есть место двум мутациям, компенсирующим друг друга. Это момент присоединения нуклеотидной пары после того, как одна была утеряна, и наоборот.

Нонсенс-мутации

Это особая группа мутаций. Она происходит редко, в ее случае происходит появление стоп-кодонов. Это может случиться как при утрате пар нуклеотидов, так и при их присоединении. Когда появляются стоп-кодоны, синтез полипептидов полностью останавливается. Так могут образоваться нуль-аллели. Этому не будет соответствовать ни один из белков.

Есть такое понятие, как межгенная супрессия. Это такое явление, когда мутация одних генов подавляет мутации в других.

Выявляются ли изменения при беременности?

Генные мутации, связанные с изменением числа хромосом, в большинстве случаев можно определить. Чтобы узнать, есть ли у плода пороки в развитии и патологии, на первых неделях беременности (с десяти до тринадцати недель) назначают скрининг. Это ряд простых обследований: забор на анализы крови из пальца и вены, УЗИ. На ультразвуковом исследовании плод рассматривают в соответствии с параметрами всех конечностей, носа и головы. Эти параметры при сильном несоответствии нормам указывают на то, что у малыша есть пороки в развитии. Подтверждается или опровергается этот диагноз на основании результатов анализа крови.

Также под пристальным наблюдением медиков оказываются будущие мамы, у малышей которых могут возникнуть мутации на генном уровне, передающиеся по наследству. То есть это те женщины, в родне которых были случаи рождения ребенка с умственными или физическими отклонениями, выявленными синдромами Дауна, Патау и прочими генетическими заболеваниями.

Введение

Хромосомные аномалии вызывают обычно целый комплекс нарушений в строении и функциях различных органов, а также поведенческие и психические расстройства. Среди последних нередко обнаруживается ряд типичных особенностей, таких как умственная отсталость той или иной степени, аутистические черты, неразвитость навыков социального взаимодействия, ведущие асоциальности и антисоциальности.

Причины изменения числа хромосом

Изменения числа хромосом возникают в результате нарушения клеточного деления, что может коснуться как сперматозоида, так и яйцеклетки. Иногда это приводит к хромосомным аномалиям

Хромосомы заключают в себе генетическую информацию в форме генов. Ядро каждой клетки человека, за исключением яйцеклетки и сперматозоида, содержит 46 хромосом, образующих 23 пары. Одна хромосома в каждой паре получена от матери, а другая - от отца. У обоих полов 22 из 23 пар хромосом одинаковые, отличается только оставшаяся пара половых хромосом. У женщин имеется две Х-хромосомы (XX), а у мужчин - одна Х - и одна Y-хромосома (XY). Следовательно, нормальный набор хромосом (кариотип) мужчины - 46, XY, а женщины - 46, XX.

Если ошибка происходит во время особой разновидности клеточного деления, при котором образуются яйцеклетки и сперматозоиды, то возникают аномальные половые клетки, что ведет к рождению потомства с хромосомной патологией. Хромосомный дисбаланс может быть как количественным, так и структурным.

Различают четыре основные количественные хромосомные аномалии, каждая из которых ассоциирована с определенным синдромом:

47, XYY - XYY-синдром;

47, XXY - синдром Клайнфельтера;

45, X - синдром Тернера;

47, XXX - трисомия.

хромосомная аномалия антисоциальность характерологический

Лишняя хромосома Y как причина антисоциальности

Кариотип 47, XYY проявляется только у мужчин. Характерные признаки людей, обладающих дополнительной Y - хромосомой высокий рост. При этом ускорение роста начинается в достаточно раннем возрасте и продолжается весьма долго.

Частота данного заболевания 0, 75 - 1 на 1000 человек. Цитогенетическое обследование, проведенное в 1965 г. в Америке выявило, что из 197 психических больных, содержащихся в качестве особо опасных в условиях строгого надзора, 7 из них имеют хромосомный набор XYY. По английским данным, среди преступников выше 184 см. примерно каждый четвертый имеет именно этот набор хромосом.

Большинство страдающих синдромом ХУУ не вступают в конфликт с законом; однако некоторая часть их легко поддается импульсам, приводящим к агрессии, к гомосексуализму, педофилии, воровству, поджогам; любое понуждение вызывает у них вспышки злобной ярости, очень слабо контролируемые задерживающими нервами. Вследствие двойной Y хромосомы, хромосома X становится "ломкой" и из носителя данного набора, получается, так сказать, своеобразный "сверх-мужчина".

Рассмотрим один из более нашумевших примеров данного явления в мире преступности.

В 1966 г. общественность была взбудоражена происшествием в Чикаго, когда человек по имени Ричард Спек жестоко убил восемь девушек, студенток медицинского колледжа.14 июля 1966 года его занесло на окраину Чикаго, где он постучался в дом, где жили девять студенток медицинского колледжа. Открывшей ему студентке он пообещал не причинять никому вреда, сказав, что ему просто нужны деньги для покупки билета до Нового Орлеана. Проникнув в дом, он собрал всех студенток в одной комнате, связав их. Узнав, где деньги он не успокоился и, выбрав одну из студенток увел ее из комнаты. Позже он пришел еще за одной. В это время одна из девушек, даже будучи связанной, умудрилась спрятаться под кроватью. Все остальные были убиты. Одну из девушек он изнасиловал. После этого он отправился в ближайший кабак "кутить" на вырученные 50 долларов. Через несколько дней он был пойман. В процессе следствия пытался покончить жизнь самоубийством. У Ричарда Спека, убийцы восьмерых студенток, при анализе крови была обнаружена лишняя хромосома Y - " хромосома преступления"

Вопрос о необходимости раннего выделения хромосомных аберрантов с кариотипом ХУУ, о необходимости особых мер ограждения от них и обычного населения, и преступников с меньшим потенциалом агрессивности уже широко обсуждается в зарубежной генетической и юридической литературе.

Взрослый мужчина, у которого впервые выявлен кариотип 47, XYY, нуждается в психологической поддержке; могут потребоваться медико-генетические консультации.

Поскольку поставленное на очередь кариологическое выделение лиц с синдромом XYY среди высокорослых преступников представляет собой технически трудоемкую задачу, появились экспресс-методы выявления лишней Y-хромосомы, а именно окрашивание мазков слизистой рта акрихинипритом и флуоресцентное микроскопирование (YY выделяется в виде двух светящихся точек).

Изменения структурной организации хромосом. Хромосомные мутации

Несмотря на эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями.

Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами (см. разд. 3.6.2.3). Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делении - или удваиваются - дупликации (рис. 3.57). При таких перестройках изменяется число генов в группе сцепления.

Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

Рис. 3.57. Виды хромосомных перестроек

Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° - инверсия. В зависимости от того, включает ли данный участок область центромеры или нет, различают перицентрические и парацентрические инверсии (рис. 3.57).

Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом - транслокация. Нередко две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками -ре-ципрокная транслокация (рис. 3.57). Возможно присоединение фрагмента к своей же хромосоме, но в новом месте - транспозиция (рис. 3.57). Таким образом, различные виды инверсий и транслокаций характеризуются изменением локализации генов.

Хромосомные перестройки, как правило, проявляются в изменении морфологии хромосом, что можно наблюдать в световой микроскоп. Метацентрические хромосомы превращаются в субметацентрические и акроцентрические и наоборот (рис. 3.58), появляются кольцевые и полицентрические хромосомы (рис. 3.59). Особую категорию хромосомных мутаций представляют аберрации, связанные с центрическим слиянием или разделением хромосом, когда две негомологичные структуры объединяются в одну - робертсоновская транслокация, или одна хромосома образует две самостоятельные хромосомы (рис. 3.60). При таких мутациях не только появляются хромосомы с новой морфологией, но и изменяется их количество в кариотипе.

Рис. 3.58. Изменение формы хромосом

в результате перицентрических инверсий

Рис. 3.59. Образование кольцевых (I ) и полицентрических (II ) хромосом

Рис. 3.60. Хромосомные перестройки, связанные с центрическим слиянием

или разделением хромосом являются причиной изменения числа хромосом

в кариотипе

Рис. 3.61. Петля, образующаяся при конъюгации гомологичных хромосом, которые несут неравноценный наследственный материал в соответствующих участках в результате хромосомной перестройки

Описанные структурные изменения хромосом, как правило, сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки, так как изменяется количественное соотношение генов (при делениях и дупликациях), меняется характер их функционирования в связи с изменением взаимного расположения в хромосоме (при инверсии и транспозиции) или с переходом в другую группу сцепления (при транслокации). Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клеток организма, но особенно серьезные последствия имеют хромосомные перестройки, происходящие в предшественниках гамет.

Изменения структуры хромосом в предшественниках гамет сопровождаются нарушением процесса конъюгации гомологов в мейозе и их последующего расхождения. Так, делении или дупликации участка одной из хромосом сопровождаются при конъюгации образованием петли гомологом, имеющим избыточный материал (рис. 3.61). Реципрокная транслокация между двумя негомологичными хромосомами приводит к образованию при конъюгации не бивалента, а квадривалента, в котором хромосомы образуют фигуру креста благодаря притягиванию гомологичных участков, расположенных в разных хромосомах (рис. 3.62). Участие в реципрокных транслокациях большего числа хромосом с образованием поливалента сопровождается формированием еще более сложных структур при конъюгации (рис. 3.63).

В случае инверсии бивалент, возникающий в профазе I мейоза, образует петлю, включающую взаимно инвертированный участок (рис. 3.64).

Конъюгация и последующее расхождение структур, образованных измененными хромосомами, приводит к появлению новых хромосомных перестроек. В результате гаметы, получая неполноценный наследственный материал, не способны обеспечить формирование нормального организма нового поколения. Причиной этой является нарушение соотношения генов, входящих в состав отдельных хромосом, и их взаимного расположения.

Однако, несмотря на неблагоприятные, как правило, последствия хромосомных мутаций, иногда они оказываются совместимыми с жизнью клетки и организма и обеспечивают возможность эволюции структуры хромосом, лежащей в основе биологической эволюции. Так, небольшие по размеру делении могут сохраняться в гетерозиготном состоянии в ряду поколений. Менее вредными, чем делении, являются дупликации, хотя большой объем материала в увеличенной дозе (более 10% генома) приводит к гибели организма.

Рис. 3.64. Конъюгация хромосом при инверсиях:

I - парацентрическая инверсия в одном из гомологов, II - перидентрическая инверсия в одном из гомологов

Нередко жизнеспособными оказываются робертсоновские транслокации, часто не связанные с изменением объема наследственного материала. Этим можно объяснить варьирование числа хромосом в клетках организмов близкородственных видов. Например, у разных видов дрозофилы количество хромосом в гаплоидном наборе колеблется от 3 до 6, что объясняется процессами слияния и разделения хромосом. Возможно, существенным моментом в появлении вида Homo sapiens были структурные изменения хромосом у его обезьяноподобного предка. Установлено, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам современных человекообразных обезьян (12-й и 13-й -шимпанзе, 13-й и-14-й -гориллы и орангутана). Вероятно, эта человеческая хромосома образовалась в результате центрического слияния по типу робертсоновской транслокации двух обезьяньих хромосом.



К существенному варьированию морфологии хромосом, лежащему в основе их эволюции, приводят транслокации, транспозиции и инверсии. Анализ хромосом человека показал, что его 4, 5, 12 и 17-я хромосомы отличаются от соответствующих хромосом шимпанзе перицентрическими инверсиями.

Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.