Скорость химических реакций может существенно возрасти под действием веществ, которые называют катализаторами .

Явление изменения скорости реакции при наличии катализаторов называют катализом, а реакции с их участием – каталитическими.

Катализатор – это простое или сложное вещество, которое принимает участие в химической реакции и изменяет ее скорость, но в конце остается в химически неизменном состоянии. Если скорость химической реакции под действием катализатора возрастает, то такой катализ называют позитивным, а если уменьшается – то негативным.

Каталитические свойства проявляют переходные металлы и их соединения – оксиды, гидроксиды, сульфиды, амины, аминокислоты и др. Они способны не только значительно ускорять реакции, но и изменять их механизм. Например, при взаимодействии оксида углерода (П) и водорода, в зависимости от природы катализатора, образуются разные продукты – метан или метанол.

В процессе окисления метана кислородом воздуха при наличии разных катализаторов можно получить метанол, формальдегид или муравьиную кислоту.

Катализаторы широко используют в производстве аммиака, серной, азотной, уксусной кислот, каучука, в процессах крекинга нефти, синтеза некоторых лекарственных препаратов и тому подобное. Реакции полимеризации, гидрирования и дегидрирования, получение спиртов, альдегидов, карбоновых кислот с достаточной для технических потребностей скоростью происходят только при наличии катализаторов.

Вещества, которые замедляют скорость химических реакций, называют ингибиторами .

Ингибиторы также широко используют в технике. Их название связано с тем химическим или биохимическим процессом, который они замедляют. В частности, вещества, которые уменьшают скорость коррозии металла, называют ингибиторами коррозии , а вещества, которые тормозят любые процессы окисления разных субстратов молекулярным кислородом, - антиоксидантами.

Катализаторы оценивают по определенным критериям, среди которых к наиболее важным принадлежат: активность, специфичность, стойкость к старению и отравлениям.

Активность определяют по отношению скоростей каталитической и некаталитической реакций. Катализатор тем активнее, чем больше он снижает величину энергии активации реакции.

Специфичность (выборочность) заключается в способности катализатора увеличивать скорость только одной реакции.

На активность катализаторов значительно влияют примеси. Одни из них могут усиливать, а другие – замедлять действие катализаторов. Вещества, которые сами не имеют каталитических свойств, но усиливают действие катализаторов, называют промоторами, или активаторами.

Известно также негативное действие некоторых химических веществ на активность катализаторов, так называемых каталитических ядов. Эти соединения частично, или полностью снижают активность катализаторов.

Одним из важных видов каталитических процессов является ферментный катализ , который происходит под действием катализаторов белковой природы: так называемых ферментов, или энзимов.

Ферменты как биологические катализаторы

Все химические процессы в условиях физиологичной среды организма (гидролиз, протолиз, фосфорелирование, комплексообразование, окислительно-восстановительные реакции) могут происходить только при участии катализаторов, которые называют ферментами, или энзимами.

Ферменты – это вещества белковой природы, которые производятся клетками живых организмов и значительно увеличивают скорость биохимических процессов.

Сейчас известно более 1800 ферментов, из которых много выделено в чистом кристаллическом виде. Считают, что в клетке содержится около 10 тыс. молекул разных ферментов, которые ускоряют свыше 2 тыс. реакций. Четвертая часть изученных в настоящее время ферментов содержат ионы разных металлов и поэтому их называют металлоферментами.

И ферменты, и неорганические катализаторы подчиняются общим законам катализа и характеризуются рядом общих признаков, то есть они:

катализируют только те реакции, которые являются энергетически возможными;

не изменяют направления хода реакций;

уменьшают энергию активации реакций, тем самым ускоряя их;

не расходуются в процессе реакции.

Однако ферменты характеризуются и особенными признаками, которые дают возможность отличить их от обычных неорганических катализаторов. Эти отличия связаны с особенностями строения ферментов, которые являются сложными макромолекулами белковой природы.

1. Катализаторы в химии

Виды катализаторов

Механизм действия катализаторов

Требования, предъявляемые к катализаторам

2. Катализаторы в автомобилях

Каталитический преобразователь

Выбросы загрязняющих веществ

Как катализаторы сокращают вредные выбросы в выхлопных газах

www.parsa.com.ua Автозапчасти онлайн

www.mpg.kiev.ua MPG-CAPS биокатализатор топлива

www.bmwclub.ua БМВ клуб

www.himhelp.ru Химический сервер

elementy.ru Природа науки

www.xumuk.ru Сайт о химии

oval.ru Большая Советская энциклопедия


Энциклопедия инвестора . 2013 .

Синонимы :

КАТАЛИЗАТОР - КАТАЛИЗАТОР, катализатора, муж. (см. катализ) (хим.). Вещество, ускоряющее или замедляющее химическую реакцию, само при этом не изменяющееся. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

КАТАЛИЗАТОР - КАТАЛИЗАТОР, а, муж. (спец.). Вещество, изменяющее скорость химической реакции. | прил. катализаторный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

катализатор - вещество, ускоряющее или замедляющее реакцию, но остающееся при этом неизменным. Биол. К. являются ферменты. (

Катализаторы подразделяются на гомогенные и гетерогенные . Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный - образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества . Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al 2 O 3 , TiO 2 , ThO 2 , алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO .

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных , существуют катализаторы окисления-восстановления ; для них характерно присутствие переходного металла или его соединения (Со +3 , V 2 O 5 +MoO 3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным .

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов , каждый из которых ускоряет разные стадии реакции . Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня .

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

механизм катализа : 1)мех. стадийный(изменение пути реакции) 2)ассоциактивный 3)ферментативный 4) микрогетерогенный

Спецефичность катализа заключается в том, что в присутствии катализатора изменяется путь, по которому проходит суммарная реакция, образуются другие переходные состояния с иными энергиями активации, а поэтому изменяется и скорость хим. реакции.

переработка древесины требует больших затрат в производстве, поэтому используют катализаторы, которые ускоряют процесс химического превращения, увеличивают выход продукта и уменьшают выброс вредных веществ. приемущество изп. катализаторов в том что они не требуют больших затрат.

28. Растворы. Процессы при образовании растворов. Идеальные и реальные растворы. Гидраты и сольваты.

Растворы - гомогенные (однородные) системы, то есть каждый из компонентов распределён в массе другого в виде молекул, атомов или ионов

Процесс взаимодействия растворителя и растворённого вещества называется сольватацией (если растворителем является вода - гидратацией ).

Энергетической характеристикой растворения является теплота образования раствора , рассматриваемая как алгебраическая сумма тепловых эффектов всех эндо- и экзотермических стадий процесса. Наиболее значительными среди них являются: – поглощающие тепло процессы - разрушение кристаллической решётки, разрывы химических связей в молекулах; – выделяющие тепло процессы - образование продуктов взаимодействия растворённого вещества с растворителем (гидраты) и др.

СОЛЬВАТЫ, продукты присоединения растворителя к растворенным веществам. Обычно сольваты образуются в растворе, но нередко (при охлаждении раствора, испарениирастворителя и др.) м. б. получены в виде кристаллич. фаз-кристаллосольватов.

Гидраты - продукты присоединения воды к неорганическим и органическим веществам

Скорости химических реакций могут резко увеличиваться в присутствии различных веществ, не являющихся реагентами и не входящих в состав продуктов реакции. Это замечательное явление получило название катализ (от греч. «katalysis» - разрушение). Вещество, при наличии которого в смеси увеличивается скорость реакции, называется катализатором. Его количество до и после реакции остается неизменным. Катализаторы не представляют собой какой-то особый класс веществ. В разных реакциях каталитическое действие могут проявить металлы, оксиды, кислоты, соли, комплексные соединения. Химические реакции в живых клетках протекают под контролем каталитических белков, называемых ферментами. Катализ следует рассматривать как истинно химический фактор увеличения скоростей химических реакций, так как катализатор непосредственно участвует в реакции. Катализ часто оказывается более мощным и менее рискованным средством ускорения реакции, чем повышение температуры. Это ярко проявляется на примере химических реакций в живых организмах. Реакции, например гидролиз белков, которые в лабораториях приходится проводить при длительном нагревании до температуры кипения, в процессе пищеварения протекают без нагревания при температуре тела.

Впервые явление катализа наблюдал французский химик Л. Ж. Тенар (1777-1857) в 1818 г. Он обнаружил, что оксиды некоторых металлов при внесении в раствор перекиси водорода вызывают ее разложение. Такой опыт легко воспроизвести, внеся кристаллы перманганата калия в 3%-ный раствор перекиси водорода. Соль КМп0 4 превращается в Мп0 2 , и из раствора под действием оксида быстро выделяется кислород:

Непосредственно действие катализатора на скорость реакции связано с понижением энергии активации. При обычной температуре понижение? а на 20 кДж/моль увеличивает константу скорости приблизительно в 3000 раз. Понижение Е Л может быть и значительно более сильным. Однако понижение энергии активации является внешним проявлением действия катализатора. Реакция характеризуется определенным значением E. v которое может измениться только при изменении самой реакции. Давая те же самые продукты, реакция при участии добавленного вещества идет по иному пути, через другие стадии и с другой энергией активации. Если на этом новом пути энергия активации оказывается ниже и реакция соответственно идет быстрее, то мы говорим, что эго вещество является катализатором.

Катализатор взаимодействует с одним из реагентов, образуя некоторое промежуточное соединение. На одной из последующих стадий реакции катализатор регенерируется - выходит из реакции в первоначальном виде. Реагенты, участвуя в каталитической реакции, продолжают взаимодействовать между собой и по медленному пути без участия катализатора. Поэтому каталитические реакции относятся к разновидности сложных реакций, называемых последовательно-параллельными. На рис. 11.8 показана зависимость константы скорости от концентрации катализатора. График зависимости не проходит через ноль, так как при отсутствии катализатора протекание реакции не прекращается.

Рис. 11.8.

наблюдаемая константа k выражается суммой k u + & к с(К)

Пример 11.5. При температуре -500 °С реакция окисления оксида серы(1У)

являющаяся одной из стадий промышленного получения серной кислоты, идет очень медленно. Дальнейшее повышение температуры неприемлемо, так как равновесие смещается влево (реакция экзотермическая) и выход продукта слишком сильно понижается. Но эта реакция ускоряется различными катализаторами, одним из которых может быть оксид азота(П). Сначала катализатор реагирует с кислородом:

а потом передает атом кислорода оксиду серы(1У):

Так образуется конечный продукт реакции и регенерируется катализатор. Для реакции открылась возможность течения по новому пути, на котором константы скорости значительно возросли:

На приведенной схеме показаны оба пути процесса окисления S0 2 . При отсутствии катализатора реакция идет только по медленному пути, а в присутствии катализатора- по обоим.

Различают два вида катализа - гомогенный и гетерогенный. В первом случае катализатор и реагенты образуют гомогенную систему в виде газовой смеси или раствора. Пример окисления оксида серы - это гомогенный катализ. Скорость гомогенной каталитической реакции зависит как от концентраций реагентов, так и от концентрации катализатора.

При гетерогенном катализе катализатор представляет собой твердое вещество в чистом виде или нанесенное на носитель. Например, платина в качестве катализатора может быть закреплена на асбесте, оксиде алюминия и т.д. Молекулы реагента адсорбируются (поглощаются) из газа или раствора на особых точках поверхности катализатора - активных центрах и при этом активируются. После химического превращения образовавшиеся молекулы продукта десорбируются с поверхности катализатора. На активных центрах повторяются акты превращения частиц. Кроме прочих факторов, скорость гетерогенной каталитической реакции зависит от площади поверхности каталитического материала.

Гетерогенный катализ особенно широко применяется в промышленности. Это объясняется легкостью осуществления непрерывного каталитического процесса при прохождении смеси реагентов через контактный аппарат с катализатором.

Катализаторы действуют избирательно, ускоряя вполне определенный вид реакций или даже отдельную реакцию и не влияя на другие. Это позволяет использовать катализаторы не только для ускорения реакций, но и для целенаправленного превращения исходных веществ в желаемые продукты. Метан и вода при 450 °С на катализаторе Fe 2 0 3 превращаются в углекислый газ и водород:

Те же вещества при 850 °С на поверхности никеля реагируют с образованием оксида углерода(П) и водорода:

Катализ относится к тем областям химии, в которых пока невозможно делать точные теоретические прогнозы. Все промышленные катализаторы для переработки нефтяных продуктов, природного газа, производства аммиака и многие другие разработаны на основе трудоемких и длительных экспериментальных исследований.

Умение управлять скоростями химических процессов имеет неоценимое значение в хозяйственной деятельности человека. При промышленном получении химических продуктов обычно необходимо увеличивать скорости технологических химических процессов, а при хранении продукции требуется уменьшать скорость разложения или воздействия кислорода, воды и т.д. Известны вещества, которые могут замедлять химические реакции. Они называются ингибиторами , или отрицательными катализаторами. Ингибиторы принципиально отличаются от настоящих катализаторов тем, что реагируют с активными частицами (свободными радикалами), которые по тем или иным причинам возникают в веществе или окружающей его среде и вызывают ценные реакции разложения и окисления. Ингибиторы постепенно расходуются, прекращая свое защитное действие. Наиболее важной разновидностью ингибиторов являются антиоксиданты, предохраняющие различные материалы от воздействия кислорода.

Следует напомнить и о том, чего нельзя добиться с помощью катализаторов. Они способны ускорять только самопроизвольные реакции. Если реакция самопроизвольно не идет, то катализатор не сможет ее ускорить. Например, никакой катализатор не может вызвать разложение воды на водород и кислород. Этот процесс можно осуществить только электролизом, затрачивая при этом электрическую работу.

Катализаторы могут активизировать и нежелательные процессы. В последние десятилетия наблюдается постепенное разрушение озонового слоя атмосферы на высоте 20-25 км. Предполагается, что в распаде озона участвуют некоторые вещества, например галогенированные углеводороды, выбрасываемые в атмосферу промышленными предприятиями, а также используемые в бытовых целях.

ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами, участвуют в регуляции биохимических процессов. Без катализаторов не могли бы протекать многие промышленные процессы.

Важнейшее свойство катализаторов – селективность, т.е. способность увеличивать скорость лишь определенных химических реакций из многих возможных. Это позволяет осуществлять реакции, протекающие в обычных условиях слишком медленно, чтобы им можно было найти практическое применение, и обеспечивает образование нужных продуктов.

Применение катализаторов способствовало бурному развитию химической промышленности. Они широко используются при переработке нефти, получении различных продуктов, создании новых материалов (например, пластмасс), нередко более дешевых, чем применявшиеся прежде. Примерно 90% объема современного химического производства основано на каталитических процессах. Особую роль играют каталитические процессы в охране окружающей среды.

В 1835 шведский химик Й.Берцелиус установил, что в присутствии определенных веществ скорость некоторых химических реакций существенно возрастает. Для таких веществ он ввел термин «катализатор» (от греч. katalysis – расслабление). Как считал Берцелиус, катализаторы обладают особой способностью ослаблять связи между атомами в молекулах, участвующих в реакции, облегчая таким образом их взаимодействие. Большой вклад в развитие представлений о работе катализаторов внес немецкий физикохимик В.Оствальд, который в 1880 дал определение катализатора как вещества, которое изменяет скорость реакции.

Согласно современным представлениям, катализатор образует комплекс с реагирующими молекулами, стабилизируемый химическими связями. После перегруппировки этот комплекс диссоциирует с высвобождением продуктов и катализатора. Для мономолекулярной реакции превращения молекулы X в Y весь этот процесс можно представить в виде

X + Кат. ® X-Кат. ® Y-Кат. ® Y + Кат.

Высвободившийся катализатор вновь связывается с X, и весь цикл многократно повторяется, обеспечивая образование больших количеств продукта – вещества Y.

Многие вещества при обычных условиях не вступают в химическую реакцию друг с другом. Так, водород и оксид углерода при комнатной температуре не взаимодействуют между собой, поскольку связь между атомами в молекуле H 2 достаточно прочная и не разрывается при атаке молекулой CO. Катализатор сближает молекулы H 2 и CO, образуя с ними связи. После перегруппировки комплекс катализатор – реагенты диссоциирует с образованием продукта, содержащего атомы C, H и O.

Нередко при взаимодействии одних и тех же веществ образуются разные продукты. Катализатор может направить процесс по пути, наиболее благоприятному для образования определенного продукта. Рассмотрим реакцию между CO и H 2 . В присутствии медьсодержащего катализатора практически единственным продуктом реакции является метанол:

Вначале молекулы СО и Н 2 адсорбируются на поверхности катализатора. Затем молекулы СО образуют с катализатором химические связи (происходит хемосорбция), оставаясь в недиссоциированной форме. Молекулы водорода также хемосорбируются на поверхности катализатора, но при этом диссоциируют. В результате перегруппировки образуется переходный комплекс Н-Кат.-CH 2 OH. После присоединения атома H комплекс распадается с высвобождением CH 3 OH и катализатора.

В присутствии никелевого катализатора как СО, так и Н 2 хемосорбируются на поверхности в диссоциированной форме, и образуется комплекс Кат.-СН 3 . Конечными продуктами реакции являются СН 4 и Н 2 О:

Большинство каталитических реакций проводят при определенных давлении и температуре, пропуская реакционную смесь, находящуюся в газообразном или жидком состоянии, через реактор, заполненный частицами катализатора. Для описания условий проведения реакции и характеристики продуктов используются следующие понятия. Объемная скорость – объем газа или жидкости, проходящий через единицу объема катализатора в единицу времени. Каталитическая активность – количество реагентов, превращенных катализатором в продукты в единицу времени. Конверсия – доля вещества, превращенного в данной реакции. Селективность – отношение количества определенного продукта к суммарному количеству продуктов (обычно выражается в процентах). Выход – отношение количества данного продукта к количеству исходного материала (обычно выражается в процентах). Производительность – количество продуктов реакции, образующихся в единице объема в единицу времени.

Гейтс Б.К. Химия каталитических процессов . М., 1981
Боресков Г.К. Катализ. Вопросы теории и практики . Новосибирск, 1987
Ганкин В.Ю., Ганкин Ю.В. Новая общая теория катализа . Л., 1991
Токабе К. Катализаторы и каталитические процессы . М., 1993

Найти "КАТАЛИЗ " на