Английский термин «Data Mining» не имеет однозначного перевода на русский язык (добыча данных, вскрытие данных, информационная проходка, извлечение данных/информации) поэтому в большинстве случаев используется в оригинале. Наиболее удачным непрямым переводом считается термин «интеллектуальный анализ данных» (ИАД).

ИАД включает методы и модели статистического анализа и машинного обучения , дистанцируясь от них в сторону автоматического анализа данных. Инструменты ИАД позволяют проводить анализ данных предметными специалистами (аналитиками), не владеющими соответствующими математическими знаниями.

Задачи, решаемые ИАД

  1. Классификация - отнесение входного вектора (объекта, события, наблюдения) к одному из заранее известных классов.
  2. Кластеризация - разделение множества входных векторов на группы (кластеры) по степени «похожести» друг на друга.
  3. Сокращение описания - для визуализации данных, лаконизма моделей, упрощения счета и интерпретации, сжатия объемов собираемой и хранимой информации.
  4. Ассоциация - поиск повторяющихся образцов. Например, поиск «устойчивых связей в корзине покупателя» (англ. market basket analysis ) - вместе с пивом часто покупают орешки.
  5. Анализ отклонений - Например, выявление нетипичной сетевой активности позволяет обнаружить вредоносные программы.
  6. Визуализация

В литературе можно встретить еще ряд классов задач. Базовыми задачами являются первые три. Остальные задачи сводятся к ним тем или иным способом.

Также можно использовать сводные задачи под основу

Алгоритмы обучения

Для задач классификации характерно «обучение с учителем », при котором построение (обучение) модели производится по выборке содержащей входные и выходные векторы.

Для задач кластеризации и ассоциации применяется «обучение без учителя », при котором построение модели производится по выборке, в которой нет выходного параметра. Значение выходного параметра («относится к кластеру …», «похож на вектор …») подбирается автоматически в процессе обучения.

Для задач сокращения описания характерно отсутствие разделения на входные и выходные векторы . Начиная с классических работ К. Пирсона по методу главных компонент , основное внимание здесь уделяется аппроксимации данных.

Этапы обучения

Можно выделить типичный ряд этапов решения задач методами ИАД:

  1. Формирование гипотезы;
  2. Сбор данных;
  3. Подготовка данных (фильтрация);
  4. Выбор модели;
  5. Подбор параметров модели и алгоритма обучения;
  6. Обучение модели (автоматический поиск остальных параметров модели);
  7. Анализ качества обучения, если неудовлетворительный переход на п. 5 или п. 4;
  8. Анализ выявленных закономерностей, если неудовлетворительный переход на п. 1, 4 или 5.

См. также

Литература

  • Паклин Н.Б., Орешков В.И. Бизнес-аналитика: от данных к знаниям (+ СD). . - СПб: Изд. Питер, 2009. - 624 с.
  • Айвазян С.А., Бухштабер В.М., Енюков Е.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности . - М.: Финансы и статистика, 1989. - 608 с.
  • Дюк В., Самойленко А. Data Mining: учебный курс (+CD).. - СПб: Изд. Питер, 2001. - 368 с.
  • Журавлёв Ю.И. , Рязанов В.В., Сенько О.В. "РАСПОЗНАВАНИЕ.Математические методы.Программная система.Практические применения", к книге прилагается компакт-диск с демоверсией программной системы «РАСПОЗНАВАНИЕ» . - М.: Изд. «Фазис», 2006. - 176 с. - ISBN 5-7036-0106-8
  • Зиновьев А. Ю. Визуализация многомерных данных . - Красноярск: Изд. Красноярского государственного технического университета, 2000. - 180 с.
  • Чубукова И. А. Data Mining: учебное пособие . - М.: Интернет-университет информационных технологий: БИНОМ: Лаборатория знаний, 2006. - 382 с. - ISBN 5-9556-0064-7

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Интеллектуальный анализ данных" в других словарях:

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия

    Топологический анализ данных новая область теоретических исследований для задач анализа данных (Data mining) и компьютерного зрения. Основные вопросы: Как из низкоразмерных представлений получать структуры высоких размерностей; Как… … Википедия

    Процесс получения высококачественной информации из текста на естественном языке. Как правило, для этого применяется статистическое обучение на основе шаблонов: входной текст разделяется с помощью шаблонов, затем производится обработка полученных… … Википедия

    интеллектуальный учет электроэнергии - [Интент] Учет электроэнергии Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические,… … Справочник технического переводчика

    У этого термина существуют и другие значения, см. Капитал (значения). Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия

    Обычный агент … Википедия

    Интеллектуальный анализ данных (англ. Data Mining) выявление скрытых закономерностей или взаимосвязей между переменными в больших массивах необработанных данных. Подразделяется на задачи классификации, моделирования и прогнозирования и другие.… … Википедия

    Для улучшения этой статьи по математике желательно?: Проставив сноски, внести более точные указания на источники. Исправить статью согласно стилистическим правилам Википедии. Переработать офо … Википедия

    Мониторинг сетей целенаправленное воздействие на сеть, осуществляемое для организации ее функционирования по заданной программе: включение и отключение системы, каналов передачи данных, терминалов, диагностика неисправностей, сбор… … Википедия

    Не следует путать с Извлечение информации. Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее… … Википедия

Книги

  • Интеллектуальный анализ данных в системах поддержки принятия решений. Моделирование слабоструктурированных временных рядов и нечеткая оценка инвестиционных проектов , Рамин Рзаев. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Предлагаемая читателю книга посвящена решению проблем, направленных на разработку методов и…

Введение

Сегодня мы являемся свидетелями активного развития технологии интеллектуального анализа данных (ИАД или data mining), появление которой связано, в первую очередь, с необходимостью аналитической обработки сверхбольших объемов информации, накапливаемой в современных хранилищах данных. Возможность использования хорошо известных методов математической статистики и машинного обучения для решения задач подобного рода открыло новые возможности перед аналитиками, исследователями, а также теми, кто принимает решения - менеджерами и руководителями компаний.

Сложность и разнообразие методов ИАД требуют создания специализированных средств конечного пользователя для решения типовых задач анализа информации в конкретных областях. Поскольку эти средства используются в составе сложных многофункциональных систем поддержки принятия решений, они должны легко интегрироваться в подобные системы. Одним из наиболее важных и перспективных направлений применения ИАД являются бизнес-приложения, поэтому опыт канадско-американской фирмы Cognos по реализации методов ИАД в составе интегрированных интеллектуальных систем поддержки принятия решений представляет интерес как для разработчиков, так и для пользователей.

Системы ИАД применяются в научных исследованиях и образовании, в работе правоохранительных органов, производстве, здравоохранении и многих других областях. Особенно широко технология ИАД используется в деловых приложениях.

В данной работе мы исследуем интеллектуальный анализ данных.

1. Интеллектуальный анализ данных

Интеллектуальный анализ данных (ИАД) обычно определяют как метод поддержки принятия решений, основанный на анализе зависимостей между данными. В рамках такой общей формулировки обычный анализ отчетов, построенных по базе данных, также может рассматриваться как разновидность ИАД. Чтобы перейти к рассмотрению более продвинутых технологий ИАД, посмотрим, как можно автоматизировать поиск зависимостей между данными.

Целью интеллектуального анализа данных (англ. Datamining, другие варианты перевода - "добыча данных", "раскопка данных") является обнаружение неявных закономерностей в наборах данных. Как научное направление он стал активно развиваться в 90-х годах XXвека, что было вызвано широким распространением технологий автоматизированной обработки информации и накоплением в компьютерных системах больших объемов данных . И хотя существующие технологии позволяли, например, быстро найти в базе данных нужную информацию, этого во многих случаях было уже недостаточно. Возникла потребность поиска взаимосвязей между отдельными событиями среди больших объемов данных, для чего понадобились методы математической статистики, теории баз данных, теории искусственного интеллекта и ряда других областей.

Классическим считается определение, данное одним из основателей направления Григорием Пятецким-Шапиро : DataMining - исследование и обнаружение "машиной" (алгоритмами, средствами искусственного интеллекта) в сырых данных скрытых знаний, которые ранее не были известны, нетривиальны, практически полезны, доступны для интерпретации.

Учитывая разнообразие форм представления данных, используемых алгоритмов и сфер применения, интеллектуальный анализ данных может проводиться с помощью программных продуктов следующих классов:

· специализированных "коробочных" программных продуктов для интеллектуального анализа;

· математических пакетов;

· электронных таблиц(и различного рода надстроек над ними);

· средств интегрированных в системы управления базами данных (СУБД);

· других программных продуктов.

В качестве примера можно привести СУБД MicrosoftSQLServer и входящие в ее состав службы AnalysisServices, обеспечивающие пользователей средствами аналитической обработки данных в режиме on-line (OLAP)и интеллектуального анализа данных, которые впервые появились в MSSQLServer 2000.

Не только Microsoft, но и другие ведущие разработчики СУБД имеют в своем арсенале средства интеллектуального анализа данных.

В ходе проведения интеллектуального анализа данных проводится исследование множества объектов (или вариантов). В большинстве случаев его можно представить в виде таблицы, каждая строка которой соответствует одному из вариантов, а в столбцах содержатся значения параметров, его характеризующих. Зависимая переменная - параметр, значение которого рассматриваем как зависящее от других параметров (независимых переменных). Собственно эту зависимость и необходимо определить, используя методы интеллектуального анализа данных.

Рассмотрим основные задачи интеллектуального анализа данных.

Задача классификации заключается в том, что для каждого варианта определяется категория или класс, которому он принадлежит. В качестве примера можно привести оценку кредитоспособности потенциального заемщика: назначаемые классы здесь могут быть "кредитоспособен" и "некредитоспособен". Необходимо отметить, что для решения задачи необходимо, чтобы множество классов было известно заранее и было бы конечным и счетным.

Задача регрессии во многом схожа с задачей классификации, но в ходе ее решения производится поиск шаблонов для определения числового значения. Иными словами, предсказываемый параметр здесь, как правило, число из непрерывного диапазона.

Отдельно выделяется задача прогнозирования новых значений на основании имеющихся значений числовой последовательности (или нескольких последовательностей, между значениями в которых наблюдается корреляция). При этом могут учитываться имеющиеся тенденции (тренды), сезонность, другие факторы. Классическим примером является прогнозирование цен акций на бирже.

Тут требуется сделать небольшое отступление. По способу решения задачи интеллектуального анализа можно разделить на два класса: обучение с учителем (от англ. supervisedlearning) и обучение без учителя (от англ. unsupervisedlearning). В первом случае требуется обучающий набор данных, на котором создается и обучается модель интеллектуального анализа данных. Готовая модель тестируется и впоследствии используется для предсказания значений в новых наборах данных. Иногда в этом же случае говорят об управляемых алгоритмах интеллектуального анализа. Задачи классификации и регрессии относятся как раз к этому типу.

Во втором случае целью является выявление закономерностей имеющихся в существующем наборе данных. При этом обучающая выборка не требуется. В качестве примера можно привести задачу анализа потребительской корзины, когда в ходе исследования выявляются товары, чаще всего покупаемые вместе. К этому же классу относится задача кластеризации.

Также можно говорить о классификации задач интеллектуального анализа данных по назначению, в соответствии с которой, они делятся на описательные (descriptive) и предсказательные (predictive). Цель решения описательных задач - лучше понять исследуемые данные, выявить имеющиеся в них закономерности, даже если в других наборах данных они встречаться не будут. Для предсказательных задач характерно то, что в ходе их решения на основании набора данных с известными результатами строится модель для предсказания новых значений.

Но вернемся к перечислению задач интеллектуального анализа данных.

Задача кластеризации - заключается в делении множества объектов на группы (кластеры) схожих по параметрам. При этом, в отличие от классификации, число кластеров и их характеристики могут быть заранее неизвестны и определяться в ходе построения кластеров исходя из степени близости объединяемых объектов по совокупности параметров.

Другое название этой задачи - сегментация. Например, интернет-магазин может быть заинтересован в проведении подобного анализа базы своих клиентов, для того, чтобы потом сформировать специальные предложения для выделенных групп, учитывая их особенности.

Кластеризация относится к задачам обучения без учителя (или "неуправляемым" задачам).

Задача определения взаимосвязей , также называемая задачей поиска ассоциативных правил , заключается в определении часто встречающихся наборов объектов среди множества подобных наборов. Классическим примером является анализ потребительской корзины, который позволяет определить наборы товаров, чаще всего встречающиеся в одном заказе (или в одном чеке). Эта информация может потом использоваться при размещении товаров в торговом зале или при формировании специальных предложений для группы связанных товаров.

Данная задача также относится к классу "обучение без учителя".

Анализ последовательностей или сиквенциальный анализ одними авторами рассматривается как вариант предыдущей задачи, другими - выделяется отдельно. Целью, в данном случае, является обнаружение закономерностей в последовательностях событий. Подобная информация позволяет, например, предупредить сбой в работе информационной системы, получив сигнал о наступлении события, часто предшествующего сбою подобного типа. Другой пример применения - анализ последовательности переходов по страницам пользователей web-сайтов.

Анализ отклонений позволяет отыскать среди множества событий те, которые существенно отличаются от нормы. Отклонение может сигнализировать о каком-то необычном событии (неожиданный результат эксперимента, мошенническая операция по банковской карте …) или, например, об ошибке ввода данных оператором.

В таблице 1.1 приведены примеры задач интеллектуального анализа данных из различных областей.

Таблица 1.1. Примеры применения интеллектуального анализа данных

Информационные технологии

Торговля

Финансовая сфера

Классификация

Оценка кредитоспособности

Регрессия

Оценка допустимого кредитного лимита

Прогнозирование

Прогнозирование продаж

Прогнозирование цен акции

Кластеризации

Сегментация клиентов

Сегментация клиентов

Определения взаимосвязей

Анализ потребительской корзины

Анализ последовательностей

Анализ переходов по страницам web-сайта

Анализ отклонений

Обнаружение вторжений в информационные системы

Выявление мошенничества с банковскими картами

Сегодня количество фирм, предлагающих продукты ИАД, исчисляется десятками, однако, не рассматривая их подробно, приведем лишь классификацию процессов ИАД, применяющихся на практике.

В системах ИАД применяется чрезвычайно широкий спектр математических, логических и статистических методов: от анализа деревьев решений (Business Objects) до нейронных сетей (NeoVista). Пока трудно говорить о перспективности или предпочтительности тех или иных методов. Технология ИАД сейчас находится в начале пути, и практического материала для каких-либо рекомендаций или обобщений явно недостаточно.

Необходимо также упомянуть об интеграции ИАД в информационные системы. Многие методы ИАД возникли из задач экспертного анализа, поэтому входными данными для них традиционно служат "плоские" файлы данных. При использовании ИАД в СППР часто приходится сначала извлекать данные из Хранилища, преобразовывать их в файлы нужных форматов и только потом переходить собственно к интеллектуальному анализу. Затем результаты анализа требуется сформулировать в терминах бизнес-понятий. Важный шаг вперед сделала компания Information Discovery, разработавшая системы OLAP Discovery System и OLAP Affinity System, предназначенные специально для интеллектуального анализа многомерных агрегированных данных .

интеллектуальный анализ данные прогнозирование

Заключение

Интеллектуальный анализ данных (ИАД, data mining, KDD - knowledge discovery in databases) представляет собой новейшее направление в области информационных систем (ИС), ориентированное на решение задач поддержки принятия решений на основе количественных и качественных исследований сверхбольших массивов разнородных ретроспективных данных.

Интеллектуальный анализ данных является одним из наиболее актуальных и востребованных направлений прикладной математики. Современные процессы бизнеса и производства порождают огромные массивы данных, и людям становится все труднее интерпретировать и реагировать на большое количество данных, которые динамически изменяются во времени выполнения, не говоря уже о предупреждении критических ситуаций. «Интеллектуальный анализ данных» извлечь максимум полезных знаний из многомерных, разнородных, неполных, неточных, противоречивых, косвенных данных. Помогает сделать это эффективно, если объем данных измеряется гигабайтами или даже терабайтами. Помогает строить алгоритмы, способные обучаться принятию решений в различных профессиональных областях.

Средства «Интеллектуального анализа данных» предохраняют людей от информационной перегрузки, перерабатывая оперативные данные в полезную информацию так, чтобы нужные действия могли быть приняты в нужные времена.

Прикладные разработки ведутся по следующим направлениям: прогнозирование в экономических системах; автоматизация маркетинговых исследований и анализ клиентских сред для производственных, торговых, телекоммуникационных и Интернет-компаний; автоматизация принятия кредитных решений и оценка кредитных рисков; мониторинг финансовых рынков; автоматические торговые системы.

Список литературы

1. Тельнов Ю.Ф. Интеллектуальные информационные системы в экономике. М. СИНТЕГ 2002. 306 с.

2. Дюк В., Самойленко А. Data Mining. Издательский дом "Питер". СПб, 2001.

3. Васильев В.П. Информационно-аналитические системы. Практикум на ПК.МФ МЭСИ -2007.

Расширение спектра услуг и усложнение правил игры на финансовом рынке требуют систематизации информации и углубленного анализа с целью оптимизации оперативной деятельности, определения тактических действий и разработки стратегии развития. Именно поэтому аналитические системы в настоящий момент уже являются необходимым инструментом банковской деятельности.

Основные требования к аналитической подсистеме банка:

  • необходимость анализа показателей деятельности банка, определяющих принятие управленческих решений на различных уровнях;
  • возможность исторического анализа показателей за любой временной период;
  • повышенные требования к возможностям динамического анализа, включая нерегламентированные отчеты, различные виды представления информации в виде таблиц и диаграмм, агрегирование данных по любым разрезам, использование методов прогнозирования и моделирования, гибкие средства формирования производных показателей на основе базовых, выполнение анализа по сценариям «что-если» и др.;
  • получение показателей на основе данных, накапливающихся в различных структурах банка, при этом процесс анализа показателей не должен сказываться на производительности и без того достаточно загруженных оперативных систем;
  • необходимость сравнения и/или согласования данных, полученных из разных оперативных систем и внешних источников.

Информационную систему банка по принципам обработки информации, как уже упоминалось выше, условно можно разбить на две части: подсистема оперативного учета и подсистема аналитической обработки информации. Первая подсистема предназначена для выполнения повседневных задач оперативного учета всех банковских операций. Главной задачей в этой подсистеме является обеспечение корректной параллельной работы многих пользователей с единой базой данных. Типичными операциями, которые выполняются в данной системе, являются операции изменения данных. И основной задачей системы управления данными является задача недопущения некорректного изменения данных при одновременной работе множества пользователей. Вторая подсистема предназначена для глубокого и всестороннего анализа уже введенных данных. В этой подсистеме не предполагается ввод новых данных или изменение уже существующих фактов. Основной задачей аналитической подсистемы является получение различных отчетов из уже существующих и собранных данных. И здесь основной проблемой является предоставление аналитикам банка удобного инструментария для работы с собранными данными и обеспечение высокой скорости обработки информации.

8.2. Архитектуры хранилища данных

В основе современного подхода к построению аналитических систем лежит идея интегрированного хранилища данных, обеспечивающего единый логический взгляд и доступ к информации, разбросанной по разнообразным оперативным системам организации и поступающей из внешних источников. При этом существенно, что данные в хранилище имеют исторический характер, т. е. обеспечивается интеграция не только разнородных источников, но и архивных данных, возникающих в процессе функционирования той или иной оперативной системы.

Данные из оперативных систем и внешних источников подвергаются различным преобразованиям, согласованию и загружаются в централизованное хранилище, которое содержит всю информацию, необходимую для всевозможных процессов принятия решений, но оно не ориентировано на выполнение тех или иных прикладных функций и с этой точки зрения является нейтральным по отношению к приложениям. Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, т. е. он должен иметь развитые инструменты доступа к данным хранилища и их обработки. Для информационного обеспечения отдельных функционально замкнутых задач используются так называемые витрины данных, в которые информация попадает либо из хранилища (зависимые витрины) либо непосредственно из источников данных, проходя предварительные согласования и преобразования (независимые витрины). Витрины данных строятся на основе реляционных или, что более популярно, многомерных СУБД. Дело в том, что для решения большинства задач анализа оказываются полезными принципы многомерной модели данных и соответствующие им многомерные базы данных.

Как известно, хранилища данных — это сравнительно новое технологическое решение, которое стало широко использоваться только в начале 1990-х гг. На сегодняшний день существуют два основных подхода к архитектуре хранилищ данных. Это так называемая корпоративная информационная фабрика (Corporate Information Factory, сокр. CIF, см. рис. 8.1) Билла Инмона и хранилище данных с архитектурой шины (Data Warehouse Bus, сокр. BUS см. рис. 8.2) Ральфа Кимболла (Ralph Kimball).

Работа хранилища в первой модели начинается со скоординированного извлечения данных из источников. После этого загружается реляционная база данных1 с третьей нормальной формой2, содержащая атомарные данные. Получившееся нормализованное хранилище используется для того, чтобы наполнить информацией дополнительные репозитории презентационных данных, т. е. данных, подготовленных для анализа. Эти репозитории, в частности, включают специализированные хранилища для изучения и «добычи» данных (Data Mining), а также витрины данных.

Рис. 8.1. Нормализованное хранилище данных с пространственными витринами итоговых данных (CIF)

При таком сценарии конечные витрины данных создаются для обслуживания бизнес-отделов или для реализации бизнес-функций и используют пространственную модель для структурирования суммарных данных. Атомарные данные остаются доступными через нормализованное хранилище данных. Очевидно, что структура атомарных и суммарных данных при таком подходе существенно различается.

Отличительными характеристиками архитектуры CIF хранилищ данных можно назвать следующие:

  1. Использование реляционной модели организации атомарных данных и пространственной — для организации суммарных данных.
  2. Использование итеративного, или «спирального», подхода при создании больших хранилищ данных, т. е. «строительство» хранилища не сразу, а по частям. Это позволяет при необходимости вносить изменения в небольшие блоки данных или программных кодов и избавляет от необходимости перепрограммировать значительные объемы данных в хранилище. То же самое можно сказать и о потенциальных ошибках: они также будут локализованы в пределах сравнительно небольшого массива без риска испортить все хранилище.
  3. Использование третьей нормальной формы для организации атомарных данных, что обеспечивает высокую степень детальности интегрированных данных и соответственно предоставляет корпорациям широкие возможности для манипулирования ими и изменения формата и способа представления данных по мере необходимости.
  4. Хранилище данных — это проект корпоративного масштаба, охватывающий все отделы и обслуживающий нужды всех пользователей корпорации.
  5. Хранилище данных — это не механическая коллекция витрин данных, а физически целостный объект.

Рис. 8.2. Пространственное хранилище данных

В модели пространственного хранилища первичные данные преобразуются в информацию, пригодную для использования на этапе подготовки данных. При этом обязательно принимаются во внимание требования к скорости обработки информации и качеству данных. Как и в модели Билла Инмона, подготовка данных начинается со скоординированного извлечения данных из источников. Ряд операций совершается централизованно, например поддержание и хранение общих справочных данных, другие действия могут быть распределенными.

Область представления пространственно структурирована, при этом она может быть централизованной или распределенной. Пространственная модель хранилища данных содержит ту же атомарную информацию, что и нормализованная модель (см. подход Билла Инмона), но информация структурирована по-другому, чтобы облегчить ее использование и выполнение запросов. Эта модель включает как атомарные данные, так и обобщающую информацию (агрегаты в связанных таблицах или многомерных кубах) в соответствии с требованиями производительности или пространственного распределения данных. Запросы в процессе выполнения обращаются к все более низкому уровню детализации без дополнительного перепрограммирования со стороны пользователей или разработчиков приложения.

Типичные черты архитектуры с общей шиной:

  1. Использование пространственной модели организации данных с архитектурой «звезда» (star scheme).
  2. Использование двухуровневой архитектуры, которая включает стадию подготовки данных, недоступную для конечных пользователей, и хранилище данных с архитектурой шины как таковое. В состав последнего входят несколько витрин атомарных данных, несколько витрин агрегированных данных и персональная витрина данных, но оно не содержит одного физически целостного или централизованного хранилища данных.
  3. Хранилище данных с архитектурой шины обладает следующими характеристиками:
    • оно пространственное;
    • включает как данные о транзакциях, так и суммарные данные;
    • включает витрины данных, посвященные только одной предметной области или имеющие только одну таблицу фактов (fact table);
    • может содержать множество витрин данных в пределах одной базы данных.
  4. Хранилище данных не является единым физическим репозиторием (в отличие от подхода Билла Инмона). Это «виртуальное» хранилище. Это коллекция витрин данных, каждая из которых имеет архитектуру типа «звезда».

Как компромиссное рещение был предложен гибридный подход (см. рис. 8.3).

Стоит подчеркнуть, что если окончательное представление данных приемлемо для использования, то такой подход можно считать жизнеспособным. Но двойная работа по подготовке и хранению атомарных данных сопровождается существенными дополнительными расходами и задержками. Поэтому, вероятно, стоит потратить инвестиции в ресурсы и технологии на то, чтобы соответствующим образом представить дополнительные ключевые показатели производительности для бизнеса.

Рис. 8.3. Гибрид нормализованного и пространственного хранилищ данных

8.3. Принципы обработки данных в хранилищах

Поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах:

  1. Сфера детализированных данных . Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно-поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных, так и над общим хранилищем данных.
  2. Сфера агрегированных показателей . Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация, гиперкубическое представление и многомерный анализ являются задачами систем оперативной аналитической обработки данных (OLAP On-Line Analytical Processing). Здесь можно или ориентироваться на специальные многомерные СУБД, или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида либо агрегация информации может производиться на лету в процессе сканирования детализированных таблиц реляционной БД.
  3. Сфера закономерностей . Интеллектуальная обработка производится методами интеллектуального анализа данных (ИАД, Data Mining), главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

В основе концепции OLAP лежит принцип многомерного представления данных. Эта концепция была предложена В 1993 г. Е.Ф. Коддом, который рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом», и определил 12 общих требований к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик. Позже его определение было переработано в так называемый тест FASMI (Fast Analysis Shared Multidimensional Information ), требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации.

8.4. Классификация продуктов OLAP по способу представления данных

В основе OLAP лежит идея многомерной модели данных. Человеческое мышление многомерно по определению. Когда человек задает вопросы, он налагает ограничения, тем самым формулируя вопросы во многих измерениях, поэтому процесс анализа в многомерной модели весьма приближен к реальности человеческого мышления. По измерениям в многомерной модели откладывают факторы, влияющие на деятельность предприятия (например: время, продукты, отделения компании, географию и т. п.). Таким образом получают гиперкуб (конечно, название не очень удачно, поскольку под кубом обычно понимают фигуру с равными ребрами, что, в данном случае, далеко не так), который затем наполняется показателями деятельности предприятия (цены, продажи, план, прибыли, убытки и т. п.). Наполнение это может вестись как реальными данными оперативных систем, так и прогнозируемыми на основе исторических данных. Измерения гиперкуба могут носить сложный характер, быть иерархическими, между ними могут быть установлены отношения. В процессе анализа пользователь может менять точку зрения на данные (так называемая операция смены логического взгляда), тем самым просматривая данные в различных разрезах и разрешая конкретные задачи. Над кубами могут выполняться различные операции, включая прогнозирование и условное планирование (анализ типа «что, если»). Причем операции выполняются разом над кубами, т. е. произведение, например, даст в результате произведение-гиперкуб, каждая ячейка которого является произведением ячеек соответствующих гиперкубов-множителей. Естественно, возможно выполнение операций над гиперкубами, имеющими различное число измерений.

Различают два основных вида аналитической обработки, к которым относят те или иные продукты.

MOLAP . Собственно многомерная (multidimensional) OLAP. В основе продукта лежит нереляционная структура данных, обеспечивающая многомерное хранение, обработку и представление данных. Соответственно и базы данных называют многомерными. Продукты, относящиеся к этому классу, обычно имеют сервер многомерных баз данных. Данные в процессе анализа выбираются исключительно из многомерной структуры. Подобная структура является высокопроизводительной.

ROLAP . Реляционная (relational) OLAP. Как и подразумевается названием, многомерная структура в таких инструментах реализуется реляционными таблицами, а данные в процессе анализа соответственно выбираются из реляционной базы данных аналитическим инструментом.

Недостатки и преимущества каждого подхода в общем-то очевидны. Многомерная OLAP обеспечивает лучшую производительность, но структуры нельзя использовать для обработки больших объемов данных, поскольку большая размерность потребует больших аппаратных ресурсов, а вместе с тем разреженность гиперкубов может быть очень высокой и, следовательно, использование аппаратных мощностей не будет оправданным. Наоборот, реляционная OLAP обеспечивает обработку на больших массивах хранимых данных, т. к. возможно обеспечение более экономичного хранения, но вместе с тем значительно проигрывает в скорости работы многомерной. Подобные рассуждения привели к выделению нового класса аналитических инструментов — HOLAP. Это гибридная (hybrid) оперативная аналитическая обработка. Инструменты этого класса позволяют сочетать оба подхода — реляционный и многомерный. Доступ может вестись как к данным многомерных баз, так и к данным реляционных.

Помимо перечисленных средств существует еще один класс — инструменты генерации запросов и отчетов для настольных ПК, дополненные функциями OLAP или интегрированные с внешними средствами, выполняющими такие функции. Эти хорошо развитые системы осуществляют выборку данных из исходных источников, преобразуют их и помещают в динамическую многомерную БД, функционирующую на клиентской станции конечного пользователя.

8.5. Системы интеллектуального анализа данных

Системы OLAP, так же как и классические системы математической статистической обработки информации, в настоящий момент далеко не всегда могут удовлетворить потребности современных аналитиков. Прежде всего они построены на принципах существования гипотез у пользователя. Однако нередко именно формулировка гипотезы оказывается самой сложной задачей при реализации бизнес-анализа для последующего принятия решений, поскольку далеко не все закономерности в данных очевидны с первого взгляда. И в этом случае применяются системы интеллектуального анализа данных (ИАД), называемые в зарубежной литературе Data Mining. Термин Data Mining означает не столько конкретную технологию, сколько сам процесс поиска корреляций, тенденций, взаимосвязей и закономерностей посредством различных математических и статистических алгоритмов: кластеризации, создания субвыборок, регрессионного и корреляционного анализа. Цель этого поиска — представить данные в виде, четко отражающем бизнес-процессы, а также построить модель, при помощи которой можно прогнозировать процессы, критичные для планирования бизнеса (например, динамику спроса на те или иные услуги либо зависимость их приобретения от каких-то характеристик потребителя).

В общем случае процесс ИАД состоит из трех стадий:

  1. выявление закономерностей (свободный поиск);
  2. использование выявленных закономерностей для предсказания неизвестных значений (прогностическое моделирование);
  3. анализ исключений, предназначенный для выявления и толкования аномалий в найденных закономерностях.

Иногда в явном виде выделяют промежуточную стадию проверки достоверности найденных закономерностей между их нахождением и использованием (стадия валидации).

Все методы ИАД подразделяются на две большие группы по принципу работы с исходными обучающими данными.

В первой группе исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогностического моделирования и/или анализа исключений; это так называемые методы рассуждений на основе анализа прецедентов. Главной проблемой этой группы методов является затрудненность их использования на больших объемах данных, хотя именно при анализе больших хранилищ данных методы ИАД приносят наибольшую пользу.

Во второй группе методов информация вначале извлекается из первичных данных и преобразуется в некоторые формальные конструкции (их вид зависит от конкретного метода). Согласно предыдущей классификации, этот этап выполняется на стадии свободного поиска, которая у методов первой группы в принципе отсутствует. Таким образом, для прогностического моделирования и анализа исключений используются результаты этой стадии, которые гораздо более компактны, чем сами массивы исходных данных. При этом полученные конструкции могут быть либо «прозрачными» (интерпретируемыми), либо «черными ящиками» (нетрактуемыми).

Выделяют пять стандартных типов закономерностей, выявляемых методами Data Mining:

  • ассоциация — высокая вероятность связи событий друг с другом (например, один товар часто приобретается вместе с другим);
  • последовательность — высокая вероятность цепочки связанных во времени событий (например, в течение определенного срока после приобретения одного товара будет с высокой степенью вероятности приобретен другой);
  • классификация — имеются признаки, характеризующие группу, к которой принадлежит то или иное событие или объект (обычно при этом на основании анализа уже классифицированных событий формулируются некие правила);
  • кластеризация — закономерность, сходная с классификацией и отличающаяся от нее тем, что сами группы при этом не заданы — они выявляются автоматически в процессе обработки данных;
  • временные закономерности — наличие шаблонов в динамике поведения тех или иных данных (типичный пример — сезонные колебания спроса на те или иные товары либо услуги), используемых для прогнозирования.

Cегодня существует довольно большое количество разнообразных методов исследования данных, применяемых в системах ИАД:

  • регрессионный, дисперсионный и корреляционный анализ;
  • методы анализа в конкретной предметной области, базирующиеся на эмпирических моделях;
  • нейросетевые алгоритмы, идея которых основана на аналогии с функционированием нервной ткани и заключается в том, что исходные параметры рассматриваются как сигналы, преобразующиеся в соответствии с имеющимися связями между «нейронами», а в качестве ответа, являющегося результатом анализа, рассматривается отклик всей сети на исходные данные. Связи в этом случае создаются с помощью так называемого обучения сети посредством выборки большого объема, содержащей как исходные данные, так и правильные ответы;
  • алгоритмы — выбор близкого аналога исходных данных из уже имеющихся исторических данных (называются также методом «ближайшего соседа»);
  • деревья решений (decision tree) — иерархическая структура, базирующаяся на наборе вопросов, подразумевающих ответ «Да» или «Нет»; несмотря на то что данный способ обработки данных далеко не всегда идеально находит существующие закономерности, он довольно часто используется в системах прогнозирования в силу наглядности получаемого ответа;
  • кластерные модели (иногда также называемые моделями сегментации) применяются для объединения сходных событий в группы на основании сходных значений нескольких полей в наборе данных; также весьма популярны при создании систем прогнозирования;
  • алгоритмы ограниченного перебора, вычисляющие частоты комбинаций простых логических событий в подгруппах данных;
  • эволюционное программирование — поиск и генерация алгоритма, выражающего взаимозависимость данных, на основании изначально заданного алгоритма, модифицируемого в процессе поиска; иногда поиск взаимозависимостей осуществляется среди каких-либо определенных видов функций (например, полиномов).

Вопросы для самопроверки

  1. Как расшифровывается термин «OLAP»? Чем системы OLTP отличаются от систем OLAP?
  2. Каковы главные операции в системах OLAP и OLTP?
  3. Что такое хранилище данных, чем оно отличается от базы данных?
  4. Какие архитектуры создания хранилищ данных вы знаете?
  5. Как работает хранилище данных в архитектуре фабрики?
  6. Как работает хранилище данных в архитектуре «Общей шины»?
  7. Что такое гибридная архитектура хранилища данных и чем она отличается от двух других архитектур?
  8. Как расшифровывается термин FASMI, кем он был предложен и что означает?
  9. Что такое ROLAP ?
  10. Что такое MOLAP?
  11. Что такое HOLAP?
  12. Что означает термин «Data Mining» и чем он отличается от OLAP?
  13. Сколько закономерностей и каких позволяют выделить методы ИАД?
  14. Из каких стадий состоят методы ИАД?
  15. Что такое нейросетевые алгоритмы в ИАД?
  16. Что такое деревья решений в ИАД и к каким задачам в сфере анализа банковской деятельности Вы бы рекомендовали применять деревья решений?
  17. Аннотация

Несколько десятков лет назад компьютеры резко подешевели и стали доступны для широкой аудитории, что произвело революцию как во многих отраслях науки, бизнеса и промышленности, так и в нашей повседневной жизни. С помощью компьютеров можно работать с огромными базами данных, автоматизировать бизнес-процессы, контролировать работу конвейера на производстве, упрощать управление самолетом или просто хранить коллекцию семейных фотографий. Сегодня такая же революция происходит с данными. За несколько десятков лет многие отрасли и компании накопили большие объемы данных, и теперь появилась возможность извлекать пользу из этих данных, находить в них нетривиальные закономерности. Методы машинного обучения и анализа данных всё активнее используются при оптимизации производственных процессов и маршрутов транспорта, для оптимизации закупок и маркетинговых кампаний в интернет-коммерции, для создания новых лекарств и автомобилей без водителя - этот список приложений становится больше с каждым днем. Рынок анализа данных уже оценивается в 50 миллиардов долларов, и он продолжает свой стремительный рост. Специалист по анализу данных, или Data Scientist - одна из самых востребованных и привлекательных профессий нашего времени. Такие люди нужны практически везде, спрос на них огромен и только растет с каждым годом.

Становится понятно, что недостаточно наличия специалистов по анализу данных - базовые навыки важны для профессионалов из многих областей бизнеса и науки. Методы анализа данных и машинного обучения находят свое применение в социальных науках, экономике, физике, журналистике, лингвистике и даже в исторических науках. Понимание методов и возможностей машинного обучения важно для менеджеров и управленцев, которым, вполне возможно, придется столкнуться с необходимостью внедрения или разработки систем анализа данных.

Наш майнор покрывает все основные разделы анализа данных, необходимые для успешного его применения на практике. Мы начинаем с самых основ - программирования и базовых разделов математики - и переходим к современным методам машинного обучения и их использованию для решения важных прикладных задач.

Курсы майнора:

  • . На данном курсе вы познакомитесь с языком Python - одним из наиболее популярных современных языков программирования, который в том числе широко используется в анализе данных. Вы изучите основные конструкции языка и базовые структуры данных, научитесь самостоятельно писать программы.
  • . В начале этого курса мы познакомим вас с разделами математики, без которых сложно представить современный анализ данных - методы оптимизации, теория вероятностей, статистическое оценивание. После этого мы займемся изучением линейных моделей и решающих деревьев, двух наиболее распространенных видов моделей в анализе данных. Мы уделим много внимания тому, как правильно применять данные методы к различным видам данных, как измерять и оценивать их качество. На семинарах и в домашних заданиях мы будем решать реальные задачи - например, фильтрация спама, оценивание стоимости жилья или распознавание рукописных цифр. В основном мы будем использовать библиотеку scikit-learn, содержащую много готовых методов машинного обучения - но иногда придется реализовать метод самостоятельно, чтобы лучше разобраться в нем.
  • . Данный курс является продолжением предыдущего и рассказывает о том, какие модели машинного обучения чаще всего используются сейчас на практике. Основное внимание мы уделим композиционным методам и нейронным сетям, а также немного обсудим глубинное обучение - область анализа данных, которая позволяет решать с очень высоким качеством такие сложные задачи, как распознавание изображений и речи, автоматический анализ текстов, анализ биологических данных. Во второй части курса мы поговорим об основных статистических методах - параметрической и непараметрической проверке гипотез, бутстрапе, анализе временных рядов, и обсудим, почему они так важны на практике.
  • . В данном курсе мы разберем ряд важных прикладных задач, где активно используется машинное обучение - классификация текстов, построение рекомендательных систем, анализ социальных сетей, распознавание изображений. Мы выясним, как именно и какими методами нужно решать такие задачи, и попробуем самостоятельно их решить с помощью уже изученных средств на не очень сложных примерах. Также мы познакомимся с системами обработки больших данных и выясним, каковы области их применения.

Трудоемкость: 20 кредитов

Ограничения для выбора образовательным программам: Прикладная математика и информатика

Статус: состоялся

Минимальное число слушателей: 60

Максимальное число слушателей: 150

Годы реализации: 2017 - 2019

Целевая аудитория: студенты 2016 года набора

Планируемое место проведения:

По сути, интеллектуальный анализ данных - это обработка информации и выявление в ней моделей и тенденций, которые помогают принимать решения. Принципы интеллектуального анализа данных известны в течение многих лет, но с появлением больших данных они получили еще более широкое распространение.

Большие данные привели к взрывному росту популярности более широких методов интеллектуального анализа данных, отчасти потому, что информации стало гораздо больше, и она по самой своей природе и содержанию становится более разнообразной и обширной. При работе с большими наборами данных уже недостаточно относительно простой и прямолинейной статистики. Имея 30 или 40 миллионов подробных записей о покупках, недостаточно знать, что два миллиона из них сделаны в одном и том же месте. Чтобы лучше удовлетворить потребности покупателей, необходимо понять, принадлежат ли эти два миллиона к определенной возрастной группе, и знать их средний заработок.

Эти бизнес-требования привели от простого поиска и статистического анализа данных к более сложному интеллектуальному анализу данных. Для решения бизнес-задач требуется такой анализ данных, который позволяет построить модель для описания информации и в конечном итоге приводит к созданию результирующего отчета. Этот процесс иллюстрирует .

Рисунок 1. Схема процесса

Процесс анализа данных, поиска и построения модели часто является итеративным, так как нужно разыскать и выявить различные сведения, которые можно извлечь. Необходимо также понимать, как связать, преобразовать и объединить их с другими данными для получения результата. После обнаружения новых элементов и аспектов данных подход к выявлению источников и форматов данных с последующим сопоставлением этой информации с заданным результатом может измениться.

Инструменты интеллектуального анализа данных

Интеллектуальный анализ данных ― это не только используемые инструменты или программное обеспечение баз данных. Интеллектуальный анализ данных можно выполнить с относительно скромными системами баз данных и простыми инструментами, включая создание своих собственных, или с использованием готовых пакетов программного обеспечения. Сложный интеллектуальный анализ данных опирается на прошлый опыт и алгоритмы, определенные с помощью существующего программного обеспечения и пакетов, причем с различными методами ассоциируются разные специализированные инструменты.

Например, IBM SPSS®, который уходит корнями в статистический анализ и опросы, позволяет строить эффективные прогностические модели по прошлым тенденциям и давать точные прогнозы. IBM InfoSphere® Warehouse обеспечивает в одном пакете поиск источников данных, предварительную обработку и интеллектуальный анализ, позволяя извлекать информацию из исходной базы прямо в итоговый отчет.

В последнее время стала возможна работа с очень большими наборами данных и кластерная/крупномасштабная обработка данных, что позволяет делать еще более сложные обобщения результатов интеллектуального анализа данных по группам и сопоставлениям данных. Сегодня доступен совершенно новый спектр инструментов и систем, включая комбинированные системы хранения и обработки данных.

Можно анализировать самые разные наборы данных, включая традиционные базы данных SQL, необработанные текстовые данные, наборы "ключ/значение" и документальные базы. Кластерные базы данных, такие как Hadoop, Cassandra, CouchDB и Couchbase Server, хранят и предоставляют доступ к данным такими способами, которые не соответствуют традиционной табличной структуре.

В частности, более гибкий формат хранения базы документов придает обработке информации новую направленность и усложняет ее. Базы данных SQL строго регламентируют структуру и жестко придерживаются схемы, что упрощает запросы к ним и анализ данных с известными форматом и структурой.

Документальные базы данных, которые соответствуют стандартной структуре типа JSON, или файлы с некоторой машиночитаемой структурой тоже легко обрабатывать, хотя дело может осложняться разнообразной и переменчивой структурой. Например, в Hadoop, который обрабатывает совершенно "сырые" данные, может быть трудно выявить и извлечь информацию до начала ее обработки и сопоставления.

Основные методы

Несколько основных методов, которые используются для интеллектуального анализа данных, описывают тип анализа и операцию по восстановлению данных. К сожалению, разные компании и решения не всегда используют одни и те же термины, что может усугубить путаницу и кажущуюся сложность.

Рассмотрим некоторые ключевые методы и примеры того, как использовать те или иные инструменты для интеллектуального анализа данных.

Ассоциация

Ассоциация (или отношение), вероятно, наиболее известный, знакомый и простой метод интеллектуального анализа данных. Для выявления моделей делается простое сопоставление двух или более элементов, часто одного и того же типа. Например, отслеживая привычки покупки, можно заметить, что вместе с клубникой обычно покупают сливки.

Создать инструменты интеллектуального анализа данных на базе ассоциаций или отношений нетрудно. Например, в InfoSphere Warehouse есть мастер, который выдает конфигурации информационных потоков для создания ассоциаций, исследуя источник входной информации, базис принятия решений и выходную информацию. приведен соответствующий пример для образца базы данных.

Рисунок 2. Информационный поток, используемый при подходе ассоциации

Классификация

Классификацию можно использовать для получения представления о типе покупателей, товаров или объектов, описывая несколько атрибутов для идентификации определенного класса. Например, автомобили легко классифицировать по типу (седан, внедорожник, кабриолет), определив различные атрибуты (количество мест, форма кузова, ведущие колеса). Изучая новый автомобиль, можно отнести его к определенному классу, сравнивая атрибуты с известным определением. Те же принципы можно применить и к покупателям, например, классифицируя их по возрасту и социальной группе.

Кроме того, классификацию можно использовать в качестве входных данных для других методов. Например, для определения классификации можно применять деревья принятия решений. Кластеризация позволяет использовать общие атрибуты различных классификаций в целях выявления кластеров.

Исследуя один или более атрибутов или классов, можно сгруппировать отдельные элементы данных вместе, получая структурированное заключение. На простом уровне при кластеризации используется один или несколько атрибутов в качестве основы для определения кластера сходных результатов. Кластеризация полезна при определении различной информации, потому что она коррелируется с другими примерами, так что можно увидеть, где подобия и диапазоны согласуются между собой.

Метод кластеризации работает в обе стороны. Можно предположить, что в определенной точке имеется кластер, а затем использовать свои критерии идентификации, чтобы проверить это. График, изображенный на , демонстрирует наглядный пример. Здесь возраст покупателя сравнивается со стоимостью покупки. Разумно ожидать, что люди в возрасте от двадцати до тридцати лет (до вступления в брак и появления детей), а также в 50-60 лет (когда дети покинули дом) имеют более высокий располагаемый доход.

Рисунок 3. Кластеризация

В этом примере видны два кластера, один в районе $2000/20-30 лет и другой в районе $7000-8000/50-65 лет. В данном случае мы выдвинули гипотезу и проверили ее на простом графике, который можно построить с помощью любого подходящего ПО для построения графиков. Для более сложных комбинаций требуется полный аналитический пакет, особенно если нужно автоматически основывать решения на информации о ближайшем соседе .

Такое построение кластеров являет собой упрощенный пример так называемого образа ближайшего соседа . Отдельных покупателей можно различать по их буквальной близости друг к другу на графике. Весьма вероятно, что покупатели из одного и того же кластера разделяют и другие общие атрибуты, и это предположение можно использовать для поиска, классификации и других видов анализа членов набора данных.

Метод кластеризации можно применить и в обратную сторону: учитывая определенные входные атрибуты, выявлять различные артефакты. Например, недавнее исследование четырехзначных PIN-кодов выявили кластеры чисел в диапазонах 1-12 и 1-31 для первой и второй пар. Изобразив эти пары на графике, можно увидеть кластеры, связанные с датами (дни рождения, юбилеи).

Прогнозирование

Прогнозирование ― это широкая тема, которая простирается от предсказания отказов компонентов оборудования до выявления мошенничества и даже прогнозирования прибыли компании. В сочетании с другими методами интеллектуального анализа данных прогнозирование предполагает анализ тенденций, классификацию, сопоставление с моделью и отношения. Анализируя прошлые события или экземпляры, можно предсказывать будущее.

Например, используя данные по авторизации кредитных карт, можно объединить анализ дерева решений прошлых транзакций человека с классификацией и сопоставлением с историческими моделями в целях выявления мошеннических транзакций. Если покупка авиабилетов в США совпадает с транзакциями в США, то вполне вероятно, что эти транзакции подлинны.

Последовательные модели

Последовательные модели, которые часто используются для анализа долгосрочных данных, ― полезный метод выявления тенденций, или регулярных повторений подобных событий. Например, по данным о покупателях можно определить, что в разное время года они покупают определенные наборы продуктов. По этой информации приложение прогнозирования покупательской корзины, основываясь на частоте и истории покупок, может автоматически предположить, что в корзину будут добавлены те или иные продукты.

Деревья решений

Дерево решений, связанное с большинством других методов (главным образом, классификации и прогнозирования), можно использовать либо в рамках критериев отбора, либо для поддержки выбора определенных данных в рамках общей структуры. Дерево решений начинают с простого вопроса, который имеет два ответа (иногда больше). Каждый ответ приводит к следующему вопросу, помогая классифицировать и идентифицировать данные или делать прогнозы.

Рисунок 5. Подготовка данных

Источник данных, местоположение и база данных влияют на то, как будет обрабатываться и объединяться информация.

Опора на SQL

Наиболее простым из всех подходов часто служит опора на базы данных SQL. SQL (и соответствующая структура таблицы) хорошо понятен, но структуру и формат информации нельзя игнорировать полностью. Например, при изучении поведения пользователей по данным о продажах в модели данных SQL (и интеллектуального анализа данных в целом) существуют два основных формата, которые можно использовать: транзакционный и поведенческо-демографический.

При работе с InfoSphere Warehouse создание поведенческо-демографической модели в целях анализа данных о покупателях для понимания моделей их поведения предусматривает использование исходных данных SQL, основанных на информации о транзакциях, и известных параметров покупателей с организацией этой информации в заранее определенную табличную структуру. Затем InfoSphere Warehouse может использовать эту информацию для интеллектуального анализа данных методом кластеризации и классификации с целью получения нужного результата. Демографические данные о покупателях и данные о транзакциях можно скомбинировать, а затем преобразовать в формат, который допускает анализ определенных данных, как показано на .

Рисунок 6. Специальный формат анализа данных

Например, по данным о продажах можно выявить тенденции продаж конкретных товаров. Исходные данные о продажах отдельных товаров можно преобразовать в информацию о транзакциях, в которой идентификаторы покупателей сопоставляются с данными транзакций и кодами товаров. Используя эту информацию, легко выявить последовательности и отношения для отдельных товаров и отдельных покупателей с течением времени. Это позволяет InfoSphere Warehouse вычислять последовательную информацию, определяя, например, когда покупатель, скорее всего, снова приобретет тот же товар.

Из исходных данных можно создавать новые точки анализа данных. Например, можно развернуть (или доработать) информацию о товаре путем сопоставления или классификации отдельных товаров в более широких группах, а затем проанализировать данные для этих групп, вместо отдельных покупателей.

Рисунок 7. Структура MapReduce

В предыдущем примере мы выполнили обработку (в данном случае посредством MapReduce) исходных данных в документальной базе данных и преобразовали ее в табличный формат в базе данных SQL для целей интеллектуального анализа данных.

Для работы с этой сложной и даже неструктурированной информацией может потребоваться более тщательная подготовка и обработка. Существуют сложные типы и структуры данных, которые нельзя обработать и подготовить в нужном вам виде за один шаг. В этом случае можно направить выход MapReduce либо для последовательного преобразования и получения необходимой структуры данных, как показано на , либо для индивидуального изготовления нескольких таблиц выходных данных.

Рисунок 8. Последовательная цепочка вывода результатов обработки MapReduce

Например, за один проход можно взять исходную информацию из документальной базы данных и выполнить операцию MapReduce для получения краткого обзора этой информации по датам. Хорошим примером последовательного процесса является регенеририрование информации и комбинирование результатов с матрицей решений (создается на втором этапе обработки MapReduce) с последующим дополнительным упрощением в последовательную структуру. На этапе обработки MapReduce требуется, чтобы весь набор данных поддерживал отдельные шаги обработки данных.

Независимо от исходных данных, многие инструменты могут использовать неструктурированные файлы, CSV или другие источники данных. Например, InfoSphere Warehouse в дополнение к прямой связи с хранилищем данных DB2 может анализировать неструктурированные файлы.

Заключение

Интеллектуальный анализ данных - это не только выполнение некоторых сложных запросов к данным, хранящимся в базе данных. Независимо от того, используете ли вы SQL, базы данных на основе документов, такие как Hadoop, или простые неструктурированные файлы, необходимо работать с данными, форматировать или реструктурировать их. Требуется определить формат информации, на котором будет основываться ваш метод и анализ. Затем, когда информация находится в нужном формате, можно применять различные методы (по отдельности или в совокупности), не зависящие от требуемой базовой структуры данных или набора данных.